17O NMR Spectrum

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 6963 Experts worldwide ranked by ideXlab platform

René Verel - One of the best experts on this subject based on the ideXlab platform.

  • Determining the predominant tautomeric structure of iodine-based group-transfer reagents by 17O NMR spectroscopy.
    Beilstein journal of organic chemistry, 2018
    Co-Authors: Nico Santschi, Cody Ross Pitts, Benson J. Jelier, René Verel
    Abstract:

    Cyclic benziodoxole systems have become a premier scaffold for the design of electrophilic transfer reagents. A particularly intriguing aspect is the fundamental II–IIII tautomerism about the hypervalent bond, which has led in certain cases to a surprising re-evaluation of the classic hypervalent structure. Thus, through a combination of 17O NMR spectroscopy at natural abundance with DFT calculations, we establish a convenient method to provide solution-phase structural insights for this class of ubiquitous reagents. In particular, we confirm that Shen’s revised, electrophilic SCF3-transfer reagent also adopts an "acyclic" thioperoxide tautomeric form in solution. After calibration, the approach described herein likely provides a more general and direct method to distinguish between cyclic and acyclic structural features based on a single experimental 17O NMR Spectrum and a computationally-derived isotropic shift value. Furthermore, we apply this structural elucidation technique to predict the constitution of an electrophilic iodine-based cyano-transfer reagent as an NC–I–O motif and study the acid-mediated activation of Togni's trifluoromethylation reagent.

Nico Santschi - One of the best experts on this subject based on the ideXlab platform.

  • Determining the predominant tautomeric structure of iodine-based group-transfer reagents by 17O NMR spectroscopy.
    Beilstein journal of organic chemistry, 2018
    Co-Authors: Nico Santschi, Cody Ross Pitts, Benson J. Jelier, René Verel
    Abstract:

    Cyclic benziodoxole systems have become a premier scaffold for the design of electrophilic transfer reagents. A particularly intriguing aspect is the fundamental II–IIII tautomerism about the hypervalent bond, which has led in certain cases to a surprising re-evaluation of the classic hypervalent structure. Thus, through a combination of 17O NMR spectroscopy at natural abundance with DFT calculations, we establish a convenient method to provide solution-phase structural insights for this class of ubiquitous reagents. In particular, we confirm that Shen’s revised, electrophilic SCF3-transfer reagent also adopts an "acyclic" thioperoxide tautomeric form in solution. After calibration, the approach described herein likely provides a more general and direct method to distinguish between cyclic and acyclic structural features based on a single experimental 17O NMR Spectrum and a computationally-derived isotropic shift value. Furthermore, we apply this structural elucidation technique to predict the constitution of an electrophilic iodine-based cyano-transfer reagent as an NC–I–O motif and study the acid-mediated activation of Togni's trifluoromethylation reagent.

Cody Ross Pitts - One of the best experts on this subject based on the ideXlab platform.

  • Determining the predominant tautomeric structure of iodine-based group-transfer reagents by 17O NMR spectroscopy.
    Beilstein journal of organic chemistry, 2018
    Co-Authors: Nico Santschi, Cody Ross Pitts, Benson J. Jelier, René Verel
    Abstract:

    Cyclic benziodoxole systems have become a premier scaffold for the design of electrophilic transfer reagents. A particularly intriguing aspect is the fundamental II–IIII tautomerism about the hypervalent bond, which has led in certain cases to a surprising re-evaluation of the classic hypervalent structure. Thus, through a combination of 17O NMR spectroscopy at natural abundance with DFT calculations, we establish a convenient method to provide solution-phase structural insights for this class of ubiquitous reagents. In particular, we confirm that Shen’s revised, electrophilic SCF3-transfer reagent also adopts an "acyclic" thioperoxide tautomeric form in solution. After calibration, the approach described herein likely provides a more general and direct method to distinguish between cyclic and acyclic structural features based on a single experimental 17O NMR Spectrum and a computationally-derived isotropic shift value. Furthermore, we apply this structural elucidation technique to predict the constitution of an electrophilic iodine-based cyano-transfer reagent as an NC–I–O motif and study the acid-mediated activation of Togni's trifluoromethylation reagent.

Benson J. Jelier - One of the best experts on this subject based on the ideXlab platform.

  • Determining the predominant tautomeric structure of iodine-based group-transfer reagents by 17O NMR spectroscopy.
    Beilstein journal of organic chemistry, 2018
    Co-Authors: Nico Santschi, Cody Ross Pitts, Benson J. Jelier, René Verel
    Abstract:

    Cyclic benziodoxole systems have become a premier scaffold for the design of electrophilic transfer reagents. A particularly intriguing aspect is the fundamental II–IIII tautomerism about the hypervalent bond, which has led in certain cases to a surprising re-evaluation of the classic hypervalent structure. Thus, through a combination of 17O NMR spectroscopy at natural abundance with DFT calculations, we establish a convenient method to provide solution-phase structural insights for this class of ubiquitous reagents. In particular, we confirm that Shen’s revised, electrophilic SCF3-transfer reagent also adopts an "acyclic" thioperoxide tautomeric form in solution. After calibration, the approach described herein likely provides a more general and direct method to distinguish between cyclic and acyclic structural features based on a single experimental 17O NMR Spectrum and a computationally-derived isotropic shift value. Furthermore, we apply this structural elucidation technique to predict the constitution of an electrophilic iodine-based cyano-transfer reagent as an NC–I–O motif and study the acid-mediated activation of Togni's trifluoromethylation reagent.

Grey, Clare P - One of the best experts on this subject based on the ideXlab platform.

  • A 17O paramagnetic NMR study of Sm2O3, Eu2O3, and Sm/Eu-substituted CeO2.
    eScholarship University of California, 2019
    Co-Authors: Hope, Michael A, Halat, David M, Lee Jeongjae, Grey, Clare P
    Abstract:

    Paramagnetic solid-state NMR of lanthanide (Ln) containing materials can be challenging due to the high electron spin states possible for the Ln f electrons, which result in large paramagnetic shifts, and these difficulties are compounded for 17O due to the low natural abundance and quadrupolar character. In this work, we present examples of 17O NMR experiments for lanthanide oxides and strategies to overcome these difficulties. In particular, we record and assign the 17O NMR spectra of monoclinic Sm2O3 and Eu2O3 for the first time, as well as performing density functional theory (DFT) calculations to gain further insight into the spectra. The temperature dependence of the Sm3+ and Eu3+ magnetic susceptibilities are investigated by measuring the 17O shift of the cubic sesquioxides over a wide temperature range, which reveal non-Curie temperature dependence due to the presence of low-lying electronic states. This behaviour is reproduced by calculating the electron spin as a function of temperature, yielding shifts which agree well with the experimental values. Using the understanding of the magnetic behaviour gained from the sesquioxides, we then explore the local oxygen environments in 15 at% Sm- and Eu-substituted CeO2, with the 17O NMR Spectrum exhibiting signals due to environments with zero, one and two nearest neighbour Ln ions, as well as further splitting due to oxygen vacancies. Finally, we extract an activation energy for oxygen vacancy motion in these systems of 0.35 ± 0.02 eV from the Arrhenius temperature dependence of the 17O T1 relaxation constants, which is found to be independent of the Ln ion within error. The relation of this activation energy to literature values for oxygen diffusion in Ln-substituted CeO2 is discussed to infer mechanistic information which can be applied to further develop these materials as solid-state oxide-ion conductors