5-MeO-DMT - Explore the Science & Experts | ideXlab

Scan Science and Technology

Contact Leading Edge Experts & Companies

5-MeO-DMT

The Experts below are selected from a list of 285 Experts worldwide ranked by ideXlab platform

5-MeO-DMT – Free Register to Access Experts & Abstracts

Adam L Halberstadt – One of the best experts on this subject based on the ideXlab platform.

  • Behavioral and pharmacokinetic interactions between monoamine oxidase inhibitors and the hallucinogen 5-methoxy-N,N-dimethyltryptamine.
    Pharmacology biochemistry and behavior, 2016
    Co-Authors: Adam L Halberstadt
    Abstract:

    Monoamine oxidase inhibitors (MAOIs) are often ingested together with tryptamine hallucinogens, but relatively little is known about the consequences of their combined use. We have shown previously that monoamine oxidase-A (MAO-A) inhibitors alter the locomotor profile of the hallucinogen 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) in rats, and enhance its interaction with 5-HT2A receptors. The goal of the present studies was to investigate the mechanism for the interaction between 5-MeO-DMT and MAOIs, and to determine whether other behavioral responses to 5-MeO-DMT are similarly affected. Hallucinogens disrupt prepulse inhibition (PPI) in rats, an effect typically mediated by 5-HT2A activation. 5-MeO-DMT also disrupts PPI but the effect is primarily attributable to 5-HT1A activation. The present studies examined whether an MAOI can alter the respective contributions of 5-HT1A and 5-HT2A receptors to the effects of 5-MeO-DMT on PPI. A series of interaction studies using the 5-HT1A antagonist WAY-100,635 and the 5-HT2A antagonist MDL 11,939 were performed to assess the respective contributions of these receptors to the behavioral effects of 5-MeO-DMT in rats pretreated with an MAOI. The effects of MAO-A inhibition on the pharmacokinetics of 5-MeO-DMT and its metabolism to bufotenine were assessed using liquid chrochromatographyelectrospray ioniionization-selective reaction monitoring-tandem mass spectrometry (LC-ESI-SRM-MS/MS). 5-MeO-DMT (1mg/kg) had no effect on PPI when tested 45-min post-injection but disrupted PPI in animals pretreated with the MAO-A inhibitor clorgyline or the MAO-A/B inhibitor pargyline. The combined effect of 5-MeO-DMT and pargyline on PPI was antagonized by pretreatment with either WAY-100,635 or MDL 11,939. Inhibition of MAO-A increased the level of 5-MeO-DMT in plasma and whole brain, but had no effect on the conversion of 5-MeO-DMT to bufotenine, which was found to be negligible. The present results confirm that 5-MeO-DMT can disrupt PPI by activating 5-HT2A, and indicate that MAOIs alter 5-MeO-DMT pharmacodynamics by increasing its accumulation in the central nervous system.

  • Behavioral effects of α,α,β,β-tetradeutero-5-MeO-DMT in rats: comparison with 5-MeO-DMT administered in combination with a monoamine oxidase inhibitor
    Psychopharmacology, 2012
    Co-Authors: Adam L Halberstadt, David E Nichols, Mark A Geyer
    Abstract:

    Rationale Ayahuasca is a psychoactive tea prepared from a combination of plants that contain a hallucinogenic tryptamine and monoamine oxidase inhibitors (MAOIs). Behavioral pattern monitor (BPM) experiments demonstrated that the combination of 5-methoxy- N,N -dimethyltryptamine (5-MeO-DMT) and a behaviorally inactive dose of an MAO_A inhibitor such as harmaline or clorgyline induces biphasic effects on locomotor activity in rats, initially reducing locomotion and then increasing activity as time progresses. Objectives The present study investigated whether the biphasic locomotor profile induced by the combination of 5-MeO-DMT and an MAOI is a consequence of a reduction in the rate of 5-MeO-DMT metabolism. This hypothesis was tested using a deuterated derivative of 5-MeO-DMT (α,α,β,β-tetradeutero-5-MeO-DMT) that is resistant to metabolism by MAO. Results Confirming our previous findings, 1.0 mg/kg 5-MeO-DMT (s.c.) had biphasic effects on locomotor activity in rats pretreated with a behaviorally inactive dose of the nonselective MAOI pargyline (10 mg/kg). Administration of 5-MeO-DMT alone, even at doses greater than 1.0 mg/kg, produced only reductions in locomotor activity. Although low doses of α,α,β,β-tetradeutero-5-MeO-DMT (0.3 and 1.0 mg/kg, s.c.) produced only hypoactivity in the BPM, a dose of 3.0 mg/kg induced a biphasic locomotor profile similar to that produced by the combination of 5-MeO-DMT and an MAOI. Receptor binding studies demonstrated that deuterium substitution had little effect on the affinity of 5-MeO-DMT for a wide variety of neurotransmitter binding sites. Conclusions The finding with α,α,β,β-tetradeutero-5-MeO-DMT indicates that the hyperactivity induced by 5-MeO-DMT after MAO inhibition is a consequence of reduced metabolism of 5-MeO-DMT, leading to prolonged occupation of central serotonin receptors. These results demonstrate that deuterated tryptamines may be useful in behavioral and pharmacological studies to mimic the effects of tryptamine/MAOI combinations.

  • Behavioral effects of α,α,β,β-tetradeutero-5-MeO-DMT in rats: comparison with 5-MeO-DMT administered in combination with a monoamine oxidase inhibitor
    Psychopharmacology, 2012
    Co-Authors: Adam L Halberstadt, David E Nichols, Mark A Geyer
    Abstract:

    Rationale Ayahuasca is a psychoactive tea prepared from a combination of plants that contain a hallucinogenic tryptamine and monoamine oxidase inhibitors (MAOIs). Behavioral pattern monitor (BPM) experiments demonstrated that the combination of 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and a behaviorally inactive dose of an MAOA inhibitor such as harmaline or clorgyline induces biphasic effects on locomotor activity in rats, initially reducing locomotion and then increasing activity as time progresses.

Mark A Geyer – One of the best experts on this subject based on the ideXlab platform.

  • Behavioral effects of α,α,β,β-tetradeutero-5-MeO-DMT in rats: comparison with 5-MeO-DMT administered in combination with a monoamine oxidase inhibitor
    Psychopharmacology, 2012
    Co-Authors: Adam L Halberstadt, David E Nichols, Mark A Geyer
    Abstract:

    Rationale Ayahuasca is a psychoactive tea prepared from a combination of plants that contain a hallucinogenic tryptamine and monoamine oxidase inhibitors (MAOIs). Behavioral pattern monitor (BPM) experiments demonstrated that the combination of 5-methoxy- N,N -dimethyltryptamine (5-MeO-DMT) and a behaviorally inactive dose of an MAO_A inhibitor such as harmaline or clorgyline induces biphasic effects on locomotor activity in rats, initially reducing locomotion and then increasing activity as time progresses. Objectives The present study investigated whether the biphasic locomotor profile induced by the combination of 5-MeO-DMT and an MAOI is a consequence of a reduction in the rate of 5-MeO-DMT metabolism. This hypothesis was tested using a deuterated derivative of 5-MeO-DMT (α,α,β,β-tetradeutero-5-MeO-DMT) that is resistant to metabolism by MAO. Results Confirming our previous findings, 1.0 mg/kg 5-MeO-DMT (s.c.) had biphasic effects on locomotor activity in rats pretreated with a behaviorally inactive dose of the nonselective MAOI pargyline (10 mg/kg). Administration of 5-MeO-DMT alone, even at doses greater than 1.0 mg/kg, produced only reductions in locomotor activity. Although low doses of α,α,β,β-tetradeutero-5-MeO-DMT (0.3 and 1.0 mg/kg, s.c.) produced only hypoactivity in the BPM, a dose of 3.0 mg/kg induced a biphasic locomotor profile similar to that produced by the combination of 5-MeO-DMT and an MAOI. Receptor binding studies demonstrated that deuterium substitution had little effect on the affinity of 5-MeO-DMT for a wide variety of neurotransmitter binding sites. Conclusions The finding with α,α,β,β-tetradeutero-5-MeO-DMT indicates that the hyperactivity induced by 5-MeO-DMT after MAO inhibition is a consequence of reduced metabolism of 5-MeO-DMT, leading to prolonged occupation of central serotonin receptors. These results demonstrate that deuterated tryptamines may be useful in behavioral and pharmacological studies to mimic the effects of tryptamine/MAOI combinations.

  • Behavioral effects of α,α,β,β-tetradeutero-5-MeO-DMT in rats: comparison with 5-MeO-DMT administered in combination with a monoamine oxidase inhibitor
    Psychopharmacology, 2012
    Co-Authors: Adam L Halberstadt, David E Nichols, Mark A Geyer
    Abstract:

    Rationale Ayahuasca is a psychoactive tea prepared from a combination of plants that contain a hallucinogenic tryptamine and monoamine oxidase inhibitors (MAOIs). Behavioral pattern monitor (BPM) experiments demonstrated that the combination of 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and a behaviorally inactive dose of an MAOA inhibitor such as harmaline or clorgyline induces biphasic effects on locomotor activity in rats, initially reducing locomotion and then increasing activity as time progresses.

  • Differential contributions of serotonin receptors to the behavioral effects of indoleamine hallucinogens in mice
    Journal of psychopharmacology (Oxford England), 2010
    Co-Authors: Adam L Halberstadt, Liselore Koedood, Susan B. Powell, Mark A Geyer
    Abstract:

    Psilocin (4-hydroxy-N,N-dimethyltryptamine) is a hallucinogen that acts as an agonist at 5-HT1A, 5-HT2A, and 5-HT2C receptors. Psilocin is the active metabolite of psilocybin, a hallucinogen that is currently being investigated clinically as a potential therapeutic agent. In the present investigation, we used a combination of genetic and pharmacological approaches to identify the serotonin (5-HT) receptor subtypes responsible for mediating the effects of psilocin on head twitch response (HTR) and the behavioral pattern monitor (BPM) in C57BL/6J mice. We also compared the effects of psilocin with those of the putative 5-HT2C receptor-selective agonist 1-methylpsilocin and the hallucinogen and non-selective serotonin receptor agonist 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT). Psilocin, 1-methylpsilocin, and 5-MeO-DMT induced the HTR, effects that were absent in mice lacking the 5-HT2A receptor gene. When tested in the BPM, psilocin decreased locomotor activity, holepoking, and time spent in the center of…

Richardson N. Leão – One of the best experts on this subject based on the ideXlab platform.

  • Anxiety-like behavior induced by salicylate depends on age and can be prevented by a single dose of 5-MeO-DMT.
    Experimental neurology, 2020
    Co-Authors: Jessica Winne, Barbara C. Boerner, Thawann Malfatti, Elis Brisa, Jhulimar Doerl, Ingrid Nogueira, Katarina E. Leão, Richardson N. Leão
    Abstract:

    Salicylate intoxication is a cause of tinnitus and comorbidly associated with anxiety in humans. In a previous work, we showed that salicylate induces anxiety-like behavior and hippocampal type 2 theta oscillations (theta2) in mice. Here we investigate if the anxiogenic effect of salicylate is dependent on age and previous tinnitus experience. We also tested whether a single dose of DMT can prevent this effect. Using microwire electrode arrays, we recorded local field potential in young (4-5- month-old) and old (11-13-month-old) mice to study the electrophysiological effect of tinnitus in the ventral hipphippocampus (vHipp) and medial prefrontal cortex (mPFC) in an open field arena and elevated plus maze 1h after salicylate (300mg/kg) injection. We found that anxiety-like behavior and increase in theta2 oscillations (4-6 Hz), following salicylate pre-treatment, only occurs in young (normal hearing) mice. We also show that theta2 and slow gamma oscillations increase in the vHipp and mPFC in a complementary manner during anxiety tests in the presence of salicylate. Finally, we show that pre-treating mice with a single dose of the hallucinogenic 5-MeO-DMT prevents anxiety-like behavior and the increase in theta2 and slow gamma oscillations after salicylate injection in normal hearing young mice. This work further support the hypothesis that anxiety-like behavior after salicylate injection is triggered by tinnitus and require normal hearing. Moreover, our results show that hallucinogenic compounds can be effective in treating tinnitus-related anxiety.

  • Corrigendum: A Single Dose of 5-MeO-DMT Stimulates Cell Proliferation, Neuronal Survivability, Morphological and Functional Changes in Adult Mice Ventral Dentate Gyrus.
    Frontiers in molecular neuroscience, 2019
    Co-Authors: Rafael Vitor Lima Da Cruz, Lyvia Lintzmaier Petiz, Thiago C. Moulin, Richardson N. Leão
    Abstract:

    [This corrects the article DOI: 10.3389/fnmol.2018.00312.].

  • A Single Dose of 5-MeO-DMT Stimulates Cell Proliferation, Neuronal Survivability, Morphological and Functional Changes in Adult Mice Ventral Dentate Gyrus
    Frontiers in molecular neuroscience, 2018
    Co-Authors: Rafael V. Lima Da Cruz, Thiago C. Moulin, Lyvia Lintzmaier Petiz, Richardson N. Leão
    Abstract:

    The subgranular zone (SGZ) of dentate gyrus (DG) is one of the few regions in which neurogenesis is maintained throughout adulthood. It is believed that newborn neurons in this region encode temporal information about partially overlapping contextual memories. The 5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a naturally occurring compound capable of inducing a powerful psychedelic state. Recently, it has been suggested that DMT analogs may be used in the treatment of mood disorders. Due to the strong link between altered neurogenesis and mood disorders, we tested whether 5-MeO-DMT is capable of increasing DG cell proliferation. We show that a single intracerebroventricular (ICV) injection of 5-MeO-DMT increases the number of Bromodeoxyuridine (BrdU+) cells in adult mice DG. Moreover, using a transgenic animal expressing tamoxifen-dependent Cre recombinase under doublecortin promoter, we found that 5 Meo-DMT treated mice had a higher number of newborn DG Granule cells (GC). We also showed that these DG GC have more complex dendritic morphology after 5-MeO-DMT. Lastly, newborn GC treated with 5-MeO-DMT, display shorter afterhyperpolarization (AHP) potentials and higher action potential (AP) threshold compared. Our findings show that 5-MeO-DMT affects neurogenesis and this effect may contribute to the known antidepressant properties of DMT-derived compounds.