A-DNA - Explore the Science & Experts | ideXlab

Scan Science and Technology

Contact Leading Edge Experts & Companies

A-DNA

The Experts below are selected from a list of 288 Experts worldwide ranked by ideXlab platform

A-DNA – Free Register to Access Experts & Abstracts

Leona D. Samson – One of the best experts on this subject based on the ideXlab platform.

Sal Caradonna – One of the best experts on this subject based on the ideXlab platform.

Bevin P. Engelward – One of the best experts on this subject based on the ideXlab platform.

  • cloning and characterization of a mouse 3 methyladenine 7 methl guanine methylguanine dna glycosylase cdna whose gene maps to chromosme 11
    Carcinogenesis, 1993
    Co-Authors: Bevin P. Engelward, Michael S. Boosalis, Zuoming Deng, Beiru J Chen, Michael J Siciliano, Leona D. Samson
    Abstract:

    : In Escherichia coli, the repair of 3-methyladenine (3MeA) DNA lesions by DNA glycosylases prevents alkylation induced cell death. We described previously the isolation of a human 3MeA DNA glycosylase (AAG) cDNA that maps to chromosome 16 and hybridizes to specific genomic DNA fragments from a number of mammals, including mouse. As a first step in the generation of a 3MeA DNA glycosylase deficient mouse by homologous replacement in embryonic stem cells, we have cloned the mouse 3MeA DNA glycosylase cDNA. The cloned 1095 base pair cDNA contains a complete 333 amino acid open reading frame that predicts a 36.5 kDa protein and hybridizes to a 1.5 kb mRNA transcript. Mouse 3MeA DNA glycosylase (Aag) transcript levels vary by up to 21 fold among tissues, being highest in the testes and lowest in the heart. The Aag cDNA encodes a glycosylase able to release 3MeA, 7-methylguanine (7MeG) and 3-methylguanine (3MeG) from alkylated DNA. The expression of Aag in E. coli provides substantial resistance against killing by methylating agents, but, unlike its E. coli counterparts, the Aag glycosylase fails to protect against killing by ethylating and propylating agents. A 232 amino acid stretch of the predicted mouse protein shares extensive amino acid identity with rat (93%) and human (83%) 3MeA DNA glycosylases and we observe that all three mammalian glycosylases have a bipartite nuclear localization signal. The Aag gene maps to mouse chromosome 11, suggesting a segment of conserved synteny between mouse chromosome 11 and human chromosome 16, which bears the human 3MeA DNA glycosylase gene. Cloning the mouse 3MeA DNA glycosylase cDNA is a step toward understanding the role of this DNA repair enzyme in mammals.

  • Cloning and characterization of a mouse 3-methyladenine/7-methl-guanine/-methylguanine DNA glycosylase cDNA whose gene maps to chromosme 11
    Carcinogenesis, 1993
    Co-Authors: Bevin P. Engelward, Michael S. Boosalis, Beiru J.chen, Zuoming Deng, Michael J.siciliano, Leona D. Samson
    Abstract:

    In Escherichia coli, the repair of 3-methyladenine (3MeA) DNA lesions by DNA glycosylases prevents alkylation induced cell death. We described previously the isolation of a human 3MeA DNA glycosylase (AAG) cDNA that maps to chromosome 16 and hybridizes to specific genomic DNA fragments from a number of mammals, including mouse. As a first step in the generation of a 3MeA DNA glycosylase deficient mouse by homologous replacement in embryonic stem cells, we have cloned the mouse 3MeA DNA glycosylase cDNA. The cloned 1095 base pair cDNA contains a complete 333 amino acid open reading frame that predicts a 36.5 kDa protein and hybridizes to a 1.5 kb mRNA transcript. Mouse 3MeA DNA glycosylase (Aag) transcript levels vary by up to 21 fold among tissues, being highest in the testes and lowest in the heart. The Aag cDNA encodes a glycosylase able to release 3MeA, 7-methylguanine (7MeG) and 3-methylguanine (3MeG) from alkylated DNA. The expression of Aag in E. coli provides substantial resistance against killing by methylating agents, but, unlike its E. coli counterparts, the Aag glycosylase fails to protect against killing by ethylating and propylating agents. A 232 amino acid stretch of the predicted mouse protein shares extensive amino acid identity with rat (93%) and human (83%) 3MeA DNA glycosylases and we observe that all three mammalian glycosylases have a bipartite nuclear localization signal. The Aag gene maps to mouse chromosome 11, suggesting a segment of conserved synteny between mouse chromosome 11 and human chromosome 16, which bears the human 3MeA DNA glycosylase gene. Cloning the mouse 3MeA DNA glycosylase cDNA is a step toward understanding the role of this DNA repair enzyme in mammals.

Susan J Muller – One of the best experts on this subject based on the ideXlab platform.

  • Isolation and characterization of a human cDNA encoding uracil-DNA glycosylase☆
    Biochimica et Biophysica Acta, 1991
    Co-Authors: Susan J Muller, Sal Caradonna
    Abstract:

    Abstract DNA repair of genetic information is an essential defense mechanism, which protects cells against mutation and transformation. The biochemistry of human DNA repair is in its beginning stages. Our research has concentrated on the enzymes involved in the removal of atypical bases from DNA. We present information on the identification and characterization of a cDNA isolate encoding uracil-DNA glycosylase. Uracil-DNA glycosylase was purified to homogeneity from HeLa S3 cells and used to generate polyclonal antibodies. These antibodies were in turn used to isolate a uracil-DNA glycosylase specific cDNA from a human T cell (Jurkat) λ-gt11 library. The identity of this 1.25 kb cDNA was verified using in vitro transcription and translation systems to generate specific uracil-DNA glycosylase activity. Sequence data revealed a 327 amino acid open reading frame, which encodes a protein with a predicted molecular weight of 35351. No significant amino acid homology was found between this human uracil-DNA glycosylase and the glycosylases of yeast, Escherichia coli, herpes simplex virus, or a recently identified 26 000 Da species of human uracil-DNA glycosylase. This apparent lack of homology prompted an investigation of uracil-DNA glycosylase in a variety of eukaryotic species. Western analysis demonstrated the presence of a 36 kDa uracil-DNA glycosylase protein in human fibroblast, human placental and Vero cell extracts. Interestingly, these antibodies did not detect glycosylase protein in Chinese hamster ovary (CHO) or mouse NIH3T3 fibroblast cells. Under conditions of reduced stringency, Southern blot analysis of BamHI digested DNA from human fibroblasts, human placental cells and Vero cells revealed common 12 kb and 3 kb fragments. In contrast, using the same reduced stringency protocol, 6 and 8 kb fragments for CHO and NIH3T3 DNA were seen, respectively, as well as a common 3 kb fragment. Under more stringent wash conditions, the common 3 kb band was absent in all samples analyzed, and no hybridization signal was detected from DNA of hamster or mouse origin. The lack of immunological reactivity between the human uracil-DNA glycosylase and the rodent forms is therefore reflected at the genetic level as well. This distinction in human and CHO hybridization patterns enabled us to localize this human uracil-DNA glycosylase cDNA to chromosome 5 by somatic cell hybridization.

  • Isolation and characterization of a human cDNA encoding uracil-DNA glycosylase☆
    Biochimica et Biophysica Acta, 1991
    Co-Authors: Susan J Muller, Sal Caradonna
    Abstract:

    Abstract DNA repair of genetic information is an essential defense mechanism, which protects cells against mutation and transformation. The biochemistry of human DNA repair is in its beginning stages. Our research has concentrated on the enzymes involved in the removal of atypical bases from DNA. We present information on the identification and characterization of a cDNA isolate encoding uracil-DNA glycosylase. Uracil-DNA glycosylase was purified to homogeneity from HeLa S3 cells and used to generate polyclonal antibodies. These antibodies were in turn used to isolate a uracil-DNA glycosylase specific cDNA from a human T cell (Jurkat) λ-gt11 library. The identity of this 1.25 kb cDNA was verified using in vitro transcription and translation systems to generate specific uracil-DNA glycosylase activity. Sequence data revealed a 327 amino acid open reading frame, which encodes a protein with a predicted molecular weight of 35351. No significant amino acid homology was found between this human uracil-DNA glycosylase and the glycosylases of yeast, Escherichia coli, herpes simplex virus, or a recently identified 26 000 Da species of human uracil-DNA glycosylase. This apparent lack of homology prompted an investigation of uracil-DNA glycosylase in a variety of eukaryotic species. Western analysis demonstrated the presence of a 36 kDa uracil-DNA glycosylase protein in human fibroblast, human placental and Vero cell extracts. Interestingly, these antibodies did not detect glycosylase protein in Chinese hamster ovary (CHO) or mouse NIH3T3 fibroblast cells. Under conditions of reduced stringency, Southern blot analysis of BamHI digested DNA from human fibroblasts, human placental cells and Vero cells revealed common 12 kb and 3 kb fragments. In contrast, using the same reduced stringency protocol, 6 and 8 kb fragments for CHO and NIH3T3 DNA were seen, respectively, as well as a common 3 kb fragment. Under more stringent wash conditions, the common 3 kb band was absent in all samples analyzed, and no hybridization signal was detected from DNA of hamster or mouse origin. The lack of immunological reactivity between the human uracil-DNA glycosylase and the rodent forms is therefore reflected at the genetic level as well. This distinction in human and CHO hybridization patterns enabled us to localize this human uracil-DNA glycosylase cDNA to chromosome 5 by somatic cell hybridization.

Michael S. Boosalis – One of the best experts on this subject based on the ideXlab platform.

  • cloning and characterization of a mouse 3 methyladenine 7 methl guanine methylguanine dna glycosylase cdna whose gene maps to chromosme 11
    Carcinogenesis, 1993
    Co-Authors: Bevin P. Engelward, Michael S. Boosalis, Zuoming Deng, Beiru J Chen, Michael J Siciliano, Leona D. Samson
    Abstract:

    : In Escherichia coli, the repair of 3-methyladenine (3MeA) DNA lesions by DNA glycosylases prevents alkylation induced cell death. We described previously the isolation of a human 3MeA DNA glycosylase (AAG) cDNA that maps to chromosome 16 and hybridizes to specific genomic DNA fragments from a number of mammals, including mouse. As a first step in the generation of a 3MeA DNA glycosylase deficient mouse by homologous replacement in embryonic stem cells, we have cloned the mouse 3MeA DNA glycosylase cDNA. The cloned 1095 base pair cDNA contains a complete 333 amino acid open reading frame that predicts a 36.5 kDa protein and hybridizes to a 1.5 kb mRNA transcript. Mouse 3MeA DNA glycosylase (Aag) transcript levels vary by up to 21 fold among tissues, being highest in the testes and lowest in the heart. The Aag cDNA encodes a glycosylase able to release 3MeA, 7-methylguanine (7MeG) and 3-methylguanine (3MeG) from alkylated DNA. The expression of Aag in E. coli provides substantial resistance against killing by methylating agents, but, unlike its E. coli counterparts, the Aag glycosylase fails to protect against killing by ethylating and propylating agents. A 232 amino acid stretch of the predicted mouse protein shares extensive amino acid identity with rat (93%) and human (83%) 3MeA DNA glycosylases and we observe that all three mammalian glycosylases have a bipartite nuclear localization signal. The Aag gene maps to mouse chromosome 11, suggesting a segment of conserved synteny between mouse chromosome 11 and human chromosome 16, which bears the human 3MeA DNA glycosylase gene. Cloning the mouse 3MeA DNA glycosylase cDNA is a step toward understanding the role of this DNA repair enzyme in mammals.

  • Cloning and characterization of a mouse 3-methyladenine/7-methl-guanine/-methylguanine DNA glycosylase cDNA whose gene maps to chromosme 11
    Carcinogenesis, 1993
    Co-Authors: Bevin P. Engelward, Michael S. Boosalis, Beiru J.chen, Zuoming Deng, Michael J.siciliano, Leona D. Samson
    Abstract:

    In Escherichia coli, the repair of 3-methyladenine (3MeA) DNA lesions by DNA glycosylases prevents alkylation induced cell death. We described previously the isolation of a human 3MeA DNA glycosylase (AAG) cDNA that maps to chromosome 16 and hybridizes to specific genomic DNA fragments from a number of mammals, including mouse. As a first step in the generation of a 3MeA DNA glycosylase deficient mouse by homologous replacement in embryonic stem cells, we have cloned the mouse 3MeA DNA glycosylase cDNA. The cloned 1095 base pair cDNA contains a complete 333 amino acid open reading frame that predicts a 36.5 kDa protein and hybridizes to a 1.5 kb mRNA transcript. Mouse 3MeA DNA glycosylase (Aag) transcript levels vary by up to 21 fold among tissues, being highest in the testes and lowest in the heart. The Aag cDNA encodes a glycosylase able to release 3MeA, 7-methylguanine (7MeG) and 3-methylguanine (3MeG) from alkylated DNA. The expression of Aag in E. coli provides substantial resistance against killing by methylating agents, but, unlike its E. coli counterparts, the Aag glycosylase fails to protect against killing by ethylating and propylating agents. A 232 amino acid stretch of the predicted mouse protein shares extensive amino acid identity with rat (93%) and human (83%) 3MeA DNA glycosylases and we observe that all three mammalian glycosylases have a bipartite nuclear localization signal. The Aag gene maps to mouse chromosome 11, suggesting a segment of conserved synteny between mouse chromosome 11 and human chromosome 16, which bears the human 3MeA DNA glycosylase gene. Cloning the mouse 3MeA DNA glycosylase cDNA is a step toward understanding the role of this DNA repair enzyme in mammals.