The Experts below are selected from a list of 1722 Experts worldwide ranked by ideXlab platform
Brett Garner - One of the best experts on this subject based on the ideXlab platform.
-
ABCA7 deletion does not affect adult neurogenesis in the mouse
Bioscience Reports, 2016Co-Authors: Brett Garner, Tim Karl, Hongyun LiAbstract:ATP-binding cassette transporter A7 (ABCA7) is highly expressed in the brain. Recent genome-wide association studies (GWAS) have identified ABCA7 single nucleotide polymorphisms (SNPs) that increase Alzheimer's disease (AD) risk, however, the mechanisms by which ABCA7 may control AD risk remain to be fully elucidated. Based on previous research suggesting that certain ABC transporters may play a role in the regulation of neurogenesis, we conducted a study of cell proliferation and neurogenic potential using cellular bromodeoxyuridine (BrdU) incorporation and doublecortin (DCX) immunostaining in adult ABCA7 deficient mice and wild-type-like (WT) littermates. In the present study counting of BrdU-positive and DCX-positive cells in an established adult neurogenesis site in the dentate gyrus (DG) indicated there were no significant differences when WT and ABCA7 deficient mice were compared. We also measured the area occupied by immunohistochemical staining for BrdU and DCX in the DG and the subventricular zone (SVZ) of the same mice and this confirmed that ABCA7 does not play a significant role in the regulation of cell proliferation or neurogenesis in the adult mouse.
-
understanding the function of ABCA7 in alzheimer s disease
Biochemical Society Transactions, 2015Co-Authors: Brett Garner, Tim Karl, Hongyun LiAbstract:ATP-binding cassette transporter A7 (ABCA7) is highly expressed in the brain. Recent genome-wide association studies (GWAS) identify ABCA7 single nt polymorphisms (SNPs) that increase Alzheimer9s disease (AD) risk. It is now important to understand the true function of ABCA7 in the AD context. We have begun to address this using in vitro and in vivo AD models. Our initial studies showed that transient overexpression of ABCA7 in Chinese hamster ovary cells stably expressing human amyloid precursor protein (APP) resulted in an approximate 50% inhibition in the production of the AD-related amyloid-β (Aβ) peptide as compared with mock-transfected cells. This increased ABCA7 expression was also associated with alterations in other markers of APP processing and an accumulation of cellular APP. To probe for a function of ABCA7 in vivo , we crossed ABCA7 −/− mice with J20 mice, an amyloidogenic transgenic AD mouse model [B6.Cg-Tg(PDGFB-APPSwInd)20Lms/J] expressing a mutant form of human APP bearing both the Swedish (K670N/M671L) and Indiana (V717F) familial AD mutations. We found that ABCA7 loss doubled insoluble Aβ levels and amyloid plaques in the brain. This did not appear to be related to changes in APP processing (C-terminal fragment analysis), which led us to assess other mechanism by which ABCA7 may modulate Aβ homoeostasis. As we have shown that microglia express high levels of ABCA7, we examined a role for ABCA7 in the phagocytic clearance of Aβ. Our data indicated that the capacity for bone marrow-derived macrophages derived from ABCA7 −/− mice to phagocytose Aβ was reduced by 51% compared with wild-type (WT) mice. This suggests ABCA7 plays a role in the regulation of Aβ homoeostasis in the brain and that this may be related to Aβ clearance by microglia.
-
role of ABCA7 in mouse behaviours relevant to neurodegenerative diseases
PLOS ONE, 2012Co-Authors: Warren Logge, Brett Garner, David Cheng, Rose Chesworth, Surabhi Bhatia, Tim KarlAbstract:ATP-binding cassette transporters of the subfamily A (ABCA) are responsible for the translocation of lipids including cholesterol, which is crucial for neurological function. Recent studies suggest that the ABC transporter ABCA7 may play a role in the development of brain disorders such as schizophrenia and Alzheimer’s disease. However, ABCA7’s role in cognition and other behaviours has not been investigated. Therefore, we characterised homozygous ABCA7 knockout mice in a battery of tests for baseline behaviours (i.e. physical exam, baseline locomotion and anxiety) and behaviours relevant to schizophrenia (i.e. prepulse inhibition and locomotor response to psychotropic drugs) and Alzheimer’s disease (i.e. cognitive domains). Knockout mice had normal motor functions and sensory abilities and performed the same as wild type-like animals in anxiety tasks. Short-term spatial memory and fear-associated learning was also intact in ABCA7 knockout mice. However, male knockout mice exhibited significantly impaired novel object recognition memory. Task acquisition was unaffected in the cheeseboard task. Female mice exhibited impaired spatial reference memory. This phenomenon was more pronounced in female ABCA7 null mice. Acoustic startle response, sensorimotor gating and baseline locomotion was unaltered in ABCA7 knockout mice. Female knockouts showed a moderately increased motor response to MK-801 than control mice. In conclusion, ABCA7 appears to play only a minor role in behavioural domains with a subtle sex-specific impact on particular cognitive domains.
-
ATP-binding cassette transporter A7 regulates processing of amyloid precursor protein in vitro.
Journal of Neurochemistry, 2008Co-Authors: S. Chan, Andrew F Hill, John B. J. Kwok, Roberto Cappai, Brett GarnerAbstract:ATP-binding cassette transporter A7 (ABCA7) is expressed in the brain and, like its closest homolog ABCA1, belongs to the ABCA subfamily of full-length ABC transporters. ABCA1 promotes cellular cholesterol efflux to lipid-free apolipoprotein acceptors and also inhibits the production of neurotoxic β-amyloid (Aβ) peptides in vitro. The potential functions of ABCA7 in the brain are unknown. This study investigated the ability of ABCA7 to regulate cholesterol efflux to extracellular apolipoprotein acceptors and to modulate Aβ production. The transient expression of ABCA7 in human embryonic kidney cells significantly stimulated cholesterol efflux (fourfold) to apolipoprotein E (apoE) discoidal lipid complexes but not to lipid-free apoE or apoA-I. ABCA7 also significantly inhibited Aβ secretion from Chinese hamster ovary cells stably expressing human amyloid precursor protein (APP) or APP containing the Swedish K670M671N670L671 mutations when compared with mock-transfected cells. Studies with fluorogenic substrates indicated that ABCA7 had no impact on α-, β-, or γ-secretase activities. Live cell imaging of Chinese hamster ovary cells expressing APP-GFP indicated an apparent retention of APP in a perinuclear location in ABCA7 co-transfected cells. These studies indicate that ABCA7 has the capacity to stimulate cellular cholesterol efflux to apoE discs and regulate APP processing resulting in an inhibition of Aβ production.
-
role of abcg1 and abca1 in regulation of neuronal cholesterol efflux to apolipoprotein e discs and suppression of amyloid β peptide generation
Journal of Biological Chemistry, 2007Co-Authors: Aldwin Suryo Rahmanto, Alvin Kamili, Ingrid C Gelissen, Gilles J. Guillemin, Andrew F Hill, Wendy Jessup, Brett GarnerAbstract:Abstract Maintenance of an adequate supply of cholesterol is important for neuronal function, whereas excess cholesterol promotes amyloid precursor protein (APP) cleavage generating toxic amyloid-β (Aβ) peptides. To gain insights into the pathways that regulate neuronal cholesterol level, we investigated the potential for reconstituted apolipoprotein E (apoE) discs, resembling nascent lipoprotein complexes in the central nervous system, to stimulate neuronal [3H]cholesterol efflux. ApoE discs potently accelerated cholesterol efflux from primary human neurons and cell lines. The process was saturable (17.5 μg of apoE/ml) and was not influenced by APOE genotype. High performance liquid chromatography analysis of cholesterol and cholesterol metabolites effluxed from neurons indicated that <25% of the released cholesterol was modified to polar products (e.g. 24-hydroxycholesterol) that diffuse from neuronal membranes. Thus, most cholesterol (∼75%) appeared to be effluxed from neurons in a native state via a transporter pathway. ATP-binding cassette transporters ABCA1, ABCA2, and ABCG1 were detected in neurons and neuroblastoma cell lines and expression of these cDNAs revealed that ABCA1 and ABCG1 stimulated cholesterol efflux to apoE discs. In addition, ABCA1 and ABCG1 expression in Chinese hamster ovary cells that stably express human APP significantly reduced Aβ generation, whereas ABCA2 did not modulate either cholesterol efflux or Aβ generation. These data indicate that ABCA1 and ABCG1 play a significant role in the regulation of neuronal cholesterol efflux to apoE discs and in suppression of APP processing to generate Aβ peptides.
Robert S Molday - One of the best experts on this subject based on the ideXlab platform.
-
differential phospholipid substrates and directional transport by atp binding cassette proteins abca1 ABCA7 and abca4 and disease causing mutants
Journal of Biological Chemistry, 2013Co-Authors: Faraz Quazi, Robert S MoldayAbstract:Abstract ABCA1, ABCA7, and ABCA4 are members of the ABCA subfamily of ATP-binding cassette transporters which share extensive sequence and structural similarity. Mutations in ABCA1 cause Tangier disease characterized by defective cholesterol homeostasis and high-density lipoprotein (HDL) deficiency. Mutations in ABCA4 are responsible for Stargardt disease, a degenerative disorder associated with severe loss in central vision. Although cell-based studies have implicated ABCA proteins in lipid transport, the substrates and direction of transport have not been firmly established. We have purified and reconstituted ABCA1, ABCA7 and ABCA4 into liposomes for fluorescent-lipid transport studies. ABCA1 actively exported or flipped phosphatidylcholine (PC), phosphatidylserine (PS), and sphingomyelin (SM) from the cytoplasmic to the exocytoplasmic leaflet of membranes, whereas ABCA7 preferentially exported PS. In contrast ABCA4 transported phosphatidylethanolamine (PE) in the reverse direction. The same phospholipids stimulated the ATPase activity of these ABCA transporters. The transport activity and ATPase activity of ABCA1 and ABCA4 was reduced by 25% in the presence of 20% cholesterol. Nine ABCA1 Tangier mutants and corresponding ABCA4 Stargardt mutants showed significantly reduced phospholipid transport activity and subcellular mislocalization. These studies provide the first direct evidence for ABCA1 and ABCA7 functioning as phospholipid transporters and suggest that this activity is an essential step in the loading of ApoA-1 with phospholipids for HDL formation.
-
differential phospholipid substrates and directional transport by atp binding cassette proteins abca1 ABCA7 and abca4 and disease causing mutants
Journal of Biological Chemistry, 2013Co-Authors: Faraz Quazi, Robert S MoldayAbstract:ABCA1, ABCA7, and ABCA4 are members of the ABCA subfamily of ATP-binding cassette transporters that share extensive sequence and structural similarity. Mutations in ABCA1 cause Tangier disease characterized by defective cholesterol homeostasis and high density lipoprotein (HDL) deficiency. Mutations in ABCA4 are responsible for Stargardt disease, a degenerative disorder associated with severe loss in central vision. Although cell-based studies have implicated ABCA proteins in lipid transport, the substrates and direction of transport have not been firmly established. We have purified and reconstituted ABCA1, ABCA7, and ABCA4 into liposomes for fluorescent-lipid transport studies. ABCA1 actively exported or flipped phosphatidylcholine, phosphatidylserine, and sphingomyelin from the cytoplasmic to the exocytoplasmic leaflet of membranes, whereas ABCA7 preferentially exported phosphatidylserine. In contrast, ABCA4 transported phosphatidylethanolamine in the reverse direction. The same phospholipids stimulated the ATPase activity of these ABCA transporters. The transport and ATPase activities of ABCA1 and ABCA4 were reduced by 25% in the presence of 20% cholesterol. Nine ABCA1 Tangier mutants and the corresponding ABCA4 Stargardt mutants showed significantly reduced phospholipid transport activity and subcellular mislocalization. These studies provide the first direct evidence for ABCA1 and ABCA7 functioning as phospholipid transporters and suggest that this activity is an essential step in the loading of apoA-1 with phospholipids for HDL formation.
-
the role of the photoreceptor abc transporter abca4 in lipid transport and stargardt macular degeneration
Biochimica et Biophysica Acta, 2009Co-Authors: Robert S Molday, Ming Zhong, Faraz QuaziAbstract:Abstract ABCA4 is a member of the ABCA subfamily of ATP binding cassette (ABC) transporters that is expressed in rod and cone photoreceptors of the vertebrate retina. ABCA4, also known as the Rim protein and ABCR, is a large 2273 amino acid glycoprotein organized as two tandem halves, each containing a single membrane spanning segment followed sequentially by a large exocytoplasmic domain, a multispanning membrane domain and a nucleotide binding domain. Over 500 mutations in the gene encoding ABCA4 are associated with a spectrum of related autosomal recessive retinal degenerative diseases including Stargardt macular degeneration, cone–rod dystrophy and a subset of retinitis pigmentosa. Biochemical studies on the purified ABCA4 together with analysis of abca4 knockout mice and patients with Stargardt disease have implicated ABCA4 as a retinylidene-phosphatidylethanolamine transporter that facilitates the removal of potentially reactive retinal derivatives from photoreceptors following photoexcitation. Knowledge of the genetic and molecular basis for ABCA4 related retinal degenerative diseases is being used to develop rationale therapeutic treatments for this set of disorders.
-
role of the c terminus of the photoreceptor abca4 transporter in protein folding function and retinal degenerative diseases
Journal of Biological Chemistry, 2009Co-Authors: Ming Zhong, Laurie L Molday, Robert S MoldayAbstract:ABCA4 is an ATP-binding cassette transporter that is expressed in rod and cone photoreceptor cells and implicated in the removal of retinal derivatives from outer segments following photoexcitation. Mutations in the ABCA4 gene are responsible for a number of related retinal degenerative diseases, including Stargardt macular degeneration, cone-rod dystrophy, retinitis pigmentosa, and age-related macular degeneration. In order to determine the role of the C terminus of ABCA4 in protein structure and function and understand mechanisms by which C-terminal mutations cause retinal degenerative diseases, we have expressed and purified a series of deletion and substitution mutants of ABCA4 and ABCA1 in HEK 293T cells for analysis of their cellular localization and biochemical properties. Removal of the C-terminal 30 amino acids of ABCA4, including a conserved VFVNFA motif, resulted in a loss in N-retinylidene-phosphatidylethanolamine substrate binding, ATP photoaffinity labeling, and retinal-stimulated ATPase activity. This mutant was also retained in the endoplasmic reticulum of cells. Replacement of the VFVNFA motif with alanine residues also resulted in loss in function and cellular mislocalization. In contrast, C-terminal deletion mutants that retain the VFVNFA motif were functionally active and localized to intracellular vesicles similar to wild-type ABCA4. Our studies indicated that the VFVNFA motif is required for the proper folding of ABCA4 into a functionally active protein. This motif also contributes to the efficient folding of ABCA1 into an active protein. Our results provide a molecular based rationale for the disease phenotype displayed by individuals with mutations in the C terminus of ABCA4.
Arne De Roeck - One of the best experts on this subject based on the ideXlab platform.
-
the role of ABCA7 in alzheimer s disease evidence from genomics transcriptomics and methylomics
Acta Neuropathologica, 2019Co-Authors: Arne De Roeck, Christine Van Broeckhoven, Kristel SleegersAbstract:Genome-wide association studies (GWAS) originally identified ATP-binding cassette, sub-family A, member 7 (ABCA7), as a novel risk gene of Alzheimer’s disease (AD). Since then, accumulating evidence from in vitro, in vivo, and human-based studies has corroborated and extended this association, promoting ABCA7 as one of the most important risk genes of both early-onset and late-onset AD, harboring both common and rare risk variants with relatively large effect on AD risk. Within this review, we provide a comprehensive assessment of the literature on ABCA7, with a focus on AD-related human -omics studies (e.g. genomics, transcriptomics, and methylomics). In European and African American populations, indirect ABCA7 GWAS associations are explained by expansion of an ABCA7 variable number tandem repeat (VNTR), and a common premature termination codon (PTC) variant, respectively. Rare ABCA7 PTC variants are strongly enriched in AD patients, and some of these have displayed inheritance patterns resembling autosomal dominant AD. In addition, rare missense variants are more frequent in AD patients than healthy controls, whereas a common ABCA7 missense variant may protect from disease. Methylation at several CpG sites in the ABCA7 locus is significantly associated with AD. Furthermore, ABCA7 contains many different isoforms and ABCA7 splicing has been shown to associate with AD. Besides associations with disease status, these genetic and epigenetic ABCA7 markers also showed significant correlations with AD endophenotypes; in particular amyloid deposition and brain morphology. In conclusion, human-based –omics studies provide converging evidence of (partial) ABCA7 loss as an AD pathomechanism, and future studies should make clear if interventions on ABCA7 expression can serve as a valuable therapeutic target for AD.
-
The role of ABCA7 in Alzheimer’s disease: evidence from genomics, transcriptomics and methylomics
Acta Neuropathologica, 2019Co-Authors: Arne De Roeck, Christine Van Broeckhoven, Kristel SleegersAbstract:Genome-wide association studies (GWAS) originally identified ATP-binding cassette, sub-family A, member 7 (ABCA7), as a novel risk gene of Alzheimer’s disease (AD). Since then, accumulating evidence from in vitro, in vivo, and human-based studies has corroborated and extended this association, promoting ABCA7 as one of the most important risk genes of both early-onset and late-onset AD, harboring both common and rare risk variants with relatively large effect on AD risk. Within this review, we provide a comprehensive assessment of the literature on ABCA7, with a focus on AD-related human -omics studies (e.g. genomics, transcriptomics, and methylomics). In European and African American populations, indirect ABCA7 GWAS associations are explained by expansion of an ABCA7 variable number tandem repeat (VNTR), and a common premature termination codon (PTC) variant, respectively. Rare ABCA7 PTC variants are strongly enriched in AD patients, and some of these have displayed inheritance patterns resembling autosomal dominant AD. In addition, rare missense variants are more frequent in AD patients than healthy controls, whereas a common ABCA7 missense variant may protect from disease. Methylation at several CpG sites in the ABCA7 locus is significantly associated with AD. Furthermore, ABCA7 contains many different isoforms and ABCA7 splicing has been shown to associate with AD. Besides associations with disease status, these genetic and epigenetic ABCA7 markers also showed significant correlations with AD endophenotypes; in particular amyloid deposition and brain morphology. In conclusion, human-based –omics studies provide converging evidence of (partial) ABCA7 loss as an AD pathomechanism, and future studies should make clear if interventions on ABCA7 expression can serve as a valuable therapeutic target for AD.
-
An intronic VNTR affects splicing of ABCA7 and increases risk of Alzheimer’s disease
Acta Neuropathologica, 2018Co-Authors: Arne De Roeck, Tobi Bossche, Jasper Dongen, Lena Duchateau, Rita Cacace, Maria Bjerke, Patrick Cras, Rik Vandenberghe, Peter P. De Deyn, Sebastiaan EngelborghsAbstract:Mutations leading to premature termination codons in ATP-Binding Cassette Subfamily A Member 7 ( ABCA7 ) are high penetrant risk factors of Alzheimer’s disease (AD). The influence of other genetic variants in ABCA7 and downstream functional mechanisms, however, is poorly understood. To address this knowledge gap, we investigated tandem repetitive regions in ABCA7 in a Belgian cohort of 1529 AD patients and control individuals and identified an intronic variable number tandem repeat (VNTR). We observed strong association between VNTR length and a genome-wide associated signal for AD in the ABCA7 locus. Expanded VNTR alleles were highly enriched in AD patients [odds ratio = 4.5 (1.3–24.2)], and VNTR length inversely correlated with amyloid β_1–42 in cerebrospinal fluid and ABCA7 expression. In addition, we identified three novel ABCA7 alternative splicing events. One isoform in particular—which is formed through exon 19 skipping—lacks the first nucleotide binding domain of ABCA7 and is abundant in brain tissue. We observed a tight correlation between exon 19 skipping and VNTR length. Our findings underline the importance of studying repetitive DNA in complex disorders and expand the contribution of genetic and transcript variation in ABCA7 to AD.
-
an intronic vntr affects splicing of ABCA7 and increases risk of alzheimer s disease
Acta Neuropathologica, 2018Co-Authors: Arne De Roeck, Tobi Bossche, Jasper Dongen, Lena Duchateau, Rita Cacace, Maria Bjerke, Patrick Cras, Rik Vandenberghe, Peter P. De Deyn, Sebastiaan EngelborghsAbstract:Mutations leading to premature termination codons in ATP-Binding Cassette Subfamily A Member 7 (ABCA7) are high penetrant risk factors of Alzheimer's disease (AD). The influence of other genetic variants in ABCA7 and downstream functional mechanisms, however, is poorly understood. To address this knowledge gap, we investigated tandem repetitive regions in ABCA7 in a Belgian cohort of 1529 AD patients and control individuals and identified an intronic variable number tandem repeat (VNTR). We observed strong association between VNTR length and a genome-wide associated signal for AD in the ABCA7 locus. Expanded VNTR alleles were highly enriched in AD patients [odds ratio = 4.5 (1.3-24.2)], and VNTR length inversely correlated with amyloid β1-42 in cerebrospinal fluid and ABCA7 expression. In addition, we identified three novel ABCA7 alternative splicing events. One isoform in particular-which is formed through exon 19 skipping-lacks the first nucleotide binding domain of ABCA7 and is abundant in brain tissue. We observed a tight correlation between exon 19 skipping and VNTR length. Our findings underline the importance of studying repetitive DNA in complex disorders and expand the contribution of genetic and transcript variation in ABCA7 to AD.
-
deleterious ABCA7 mutations and transcript rescue mechanisms in early onset alzheimer s disease
Acta Neuropathologica, 2017Co-Authors: Arne De Roeck, Tobi Bossche, Wouter Coster, Jasper Dongen, Lubina Dillen, Bavo Heeman, Jan Verheijen, Yalda Baradaranheravi, Raquel Sanchezvalle, Albert LladoAbstract:Premature termination codon (PTC) mutations in the ATP-Binding Cassette, Sub-Family A, Member 7 gene (ABCA7) have recently been identified as intermediate-to-high penetrant risk factor for late-onset Alzheimer’s disease (LOAD). High variability, however, is observed in downstream ABCA7 mRNA and protein expression, disease penetrance, and onset age, indicative of unknown modifying factors. Here, we investigated the prevalence and disease penetrance of ABCA7 PTC mutations in a large early onset AD (EOAD)—control cohort, and examined the effect on transcript level with comprehensive third-generation long-read sequencing. We characterized the ABCA7 coding sequence with next-generation sequencing in 928 EOAD patients and 980 matched control individuals. With MetaSKAT rare variant association analysis, we observed a fivefold enrichment (p = 0.0004) of PTC mutations in EOAD patients (3%) versus controls (0.6%). Ten novel PTC mutations were only observed in patients, and PTC mutation carriers in general had an increased familial AD load. In addition, we observed nominal risk reducing trends for three common coding variants. Seven PTC mutations were further analyzed using targeted long-read cDNA sequencing on an Oxford Nanopore MinION platform. PTC-containing transcripts for each investigated PTC mutation were observed at varying proportion (5–41% of the total read count), implying incomplete nonsense-mediated mRNA decay (NMD). Furthermore, we distinguished and phased several previously unknown alternative splicing events (up to 30% of transcripts). In conjunction with PTC mutations, several of these novel ABCA7 isoforms have the potential to rescue deleterious PTC effects. In conclusion, ABCA7 PTC mutations play a substantial role in EOAD, warranting genetic screening of ABCA7 in genetically unexplained patients. Long-read cDNA sequencing revealed both varying degrees of NMD and transcript-modifying events, which may influence ABCA7 dosage, disease severity, and may create opportunities for therapeutic interventions in AD.
Shinji Yokoyama - One of the best experts on this subject based on the ideXlab platform.
-
atp binding cassette transporter a7 ABCA7 loss of function alters alzheimer amyloid processing
Journal of Biological Chemistry, 2015Co-Authors: Kanayo Satoh, Shinji Yokoyama, Sumiko Abedohmae, Peter St Georgehyslop, Paul E FraserAbstract:The ATP-binding cassette transporter A7 (ABCA7) has been identified as a susceptibility factor of late onset Alzheimer disease in genome-wide association studies. ABCA7 has been shown to mediate phagocytosis and affect membrane trafficking. The current study examined the impact of ABCA7 loss of function on amyloid precursor protein (APP) processing and generation of amyloid-β (Aβ). Suppression of endogenous ABCA7 in several different cell lines resulted in increased β-secretase cleavage and elevated Aβ. ABCA7 knock-out mice displayed an increased production of endogenous murine amyloid Aβ42 species. Crossing ABCA7-deficient animals to an APP transgenic model resulted in significant increases in the soluble Aβ as compared with mice expressing normal levels of ABCA7. Only modest changes in the amount of insoluble Aβ and amyloid plaque densities were observed once the amyloid pathology was well developed, whereas Aβ deposition was enhanced in younger animals. In vitro studies indicated a more rapid endocytosis of APP in ABCA7 knock-out cells that is mechanistically consistent with the increased Aβ production. These in vitro and in vivo findings indicate a direct role of ABCA7 in amyloid processing that may be associated with its primary biological function to regulate endocytic pathways. Several potential loss-of-function ABCA7 mutations and deletions linked to Alzheimer disease that in some instances have a greater impact than apoE allelic variants have recently been identified. A reduction in ABCA7 expression or loss of function would be predicted to increase amyloid production and that may be a contributing factor in the associated Alzheimer disease susceptibility.
-
preferential incorporation of shorter and less unsaturated acyl phospholipids into high density lipoprotein like particles in the abca1 and ABCA7 mediated biogenesis with apoa i
Chemistry and Physics of Lipids, 2015Co-Authors: Noriko Hotta, Sumiko Abedohmae, Ryo Taguchi, Shinji YokoyamaAbstract:Abstract Molecular species of phosphatidylcholine (PC) and sphingomyelin (SPM) were globally analyzed for lipidomics in the nascent high-density lipoprotein (HDL)-like particles generated with human apolipoprotein A-I (apoA-I) form HEK293 cells where either human ATP binding cassette transporter (ABC) A1 or ABCA7 was transfected and overexpressed. SPM/PC ratio was higher in the ABCA1-mediated HDL than ABCA7-mediated HDL likely being related to their cholesterol content, while it was less than the ratio in the cell membrane in either case. Molecular species composition of hydrocarbon chain moiety in each phospholipid in the HDL largely reflected that in the cells the lipoprotein originated in, without remarkable difference between ABCA1 and ABCA7. Further analysis, however, revealed apparent preference for the molecules with shorter hydrocarbon chain length for both PC and SPM in their relative incorporation into HDL by ABCA1 and ABCA7. Likewise, it was in favor for less-unsaturated hydrocarbon chains of PC while this preference was not apparent for SPM. The results are consistent with the view that assembly of HDL particles with extracellular apoA-I is primarily with the cellular phospholipid molecules being regulated in part by their physicochemical nature.
-
ABCA7 a potential mediator between cholesterol homeostasis and the host defense system
Clinical Lipidology, 2012Co-Authors: Sumiko Abedohmae, Shinji YokoyamaAbstract:ABCA7 is a molecule with high homology to ABCA1, an essential protein for the generation of HDL. However, although exogenously transfected ABCA7 supports the generation of HDL, endogenous ABCA7 does not mediate this reaction. ABCA7 is regulated by sterol regulatory element-binding protein 2 whereby ABCA7 expression responds inversely to cellular sterol levels of ABCA1, indicating it has functions other than the elimination of cellular cholesterol. In fact, ABCA7 is strongly associated with phagocytosis of various targets, including microorganisms and apoptotic cells. Accordingly, helical apolipoproteins and statins enhance phagocytic activity through increasing ABCA7, by stabilizing it and by activating sterol regulatory element-binding protein 2. Recent genome-wide association studies identified single nucleotide polymorphisms of ABCA7 as risk factors of Alzheimer’s disease and schizophrenia. While physiological roles of ABCA7 are not completely understood and the grounds for the genome-wide association ...
-
HMG-CoA reductase inhibitors enhance phagocytosis by upregulating ATP-binding cassette transporter A7
Atherosclerosis, 2011Co-Authors: Nobukiyo Tanaka, Michael L. Fitzgerald, Sumiko Abe-dohmae, Noriyuki Iwamoto, Shinji YokoyamaAbstract:Abstract We recently reported that the endogenous ATP-binding cassette transporter (ABC) A7 strongly associates with phagocytosis, being regulated by sterol regulatory element binding protein 2. We therefore examined the effect of statins on phagocytosis in vitro and in vivo through the SREBP–ABCA7. Phagocytosis was found to be enhanced by pravastatin, rosuvastatin and simvastatin and cyclodextrin in J774 macrophages, as cellular cholesterol was reduced and expressions of the cholesterol-related genes were modulated, including an increase of ABCA7 mRNA and decrease of ABCA1 mRNA. Conversely, knock-down of ABCA7 expression by siRNA ablated enhancement of phagocytosis by statins. In vivo, pravastatin enhanced phagocytosis in wild-type mice, but not in ABCA7-knockout mice. We thus concluded that statins enhance phagocytosis through the SREBP–ABCA7 pathway. These findings provide a molecular basis for enhancement of the host-defense system by statins showing that one of their “pleiotropic” effects is in fact achieved through their reaction to a primary target.
-
Roles of ATP-Binding Cassette Transporter A7 in Cholesterol Homeostasis and Host Defense System
Journal of Atherosclerosis and Thrombosis, 2010Co-Authors: Nobukiyo Tanaka, Sumiko Abe-dohmae, Noriyuki Iwamoto, Shinji YokoyamaAbstract:ATP-binding cassette transporter (ABC) A7 is an ABC family protein that is a so-called full-size ABC transporter, highly homologous to ABCA1, which mediates the biogenesis of high-density lipoprotein (HDL) with cellular lipid and helical apolipoproteins. ABCA7 mediates the formation of HDL when exogenously transfected and expressed; however, endogenous ABCA7 was shown to have no significant impact on the generation of HDL and was found to be associated with phagocytosis regulated by sterol regulatory element binding protein 2. Since phagocytosis is one of the fundamental functions of animal cells as an important responsive reaction to infection, injury and apoptosis, ABCA7 seems to be one of the key molecules linking sterol homeostasis and the host defense system. In this context, HDL apolipoproteins were shown to enhance phagocytosis by stabilizing ABCA7 against calpain-mediated degradation and increasing its activity, shedding light on a new aspect of the regulation of the host-defense system.
Faraz Quazi - One of the best experts on this subject based on the ideXlab platform.
-
differential phospholipid substrates and directional transport by atp binding cassette proteins abca1 ABCA7 and abca4 and disease causing mutants
Journal of Biological Chemistry, 2013Co-Authors: Faraz Quazi, Robert S MoldayAbstract:Abstract ABCA1, ABCA7, and ABCA4 are members of the ABCA subfamily of ATP-binding cassette transporters which share extensive sequence and structural similarity. Mutations in ABCA1 cause Tangier disease characterized by defective cholesterol homeostasis and high-density lipoprotein (HDL) deficiency. Mutations in ABCA4 are responsible for Stargardt disease, a degenerative disorder associated with severe loss in central vision. Although cell-based studies have implicated ABCA proteins in lipid transport, the substrates and direction of transport have not been firmly established. We have purified and reconstituted ABCA1, ABCA7 and ABCA4 into liposomes for fluorescent-lipid transport studies. ABCA1 actively exported or flipped phosphatidylcholine (PC), phosphatidylserine (PS), and sphingomyelin (SM) from the cytoplasmic to the exocytoplasmic leaflet of membranes, whereas ABCA7 preferentially exported PS. In contrast ABCA4 transported phosphatidylethanolamine (PE) in the reverse direction. The same phospholipids stimulated the ATPase activity of these ABCA transporters. The transport activity and ATPase activity of ABCA1 and ABCA4 was reduced by 25% in the presence of 20% cholesterol. Nine ABCA1 Tangier mutants and corresponding ABCA4 Stargardt mutants showed significantly reduced phospholipid transport activity and subcellular mislocalization. These studies provide the first direct evidence for ABCA1 and ABCA7 functioning as phospholipid transporters and suggest that this activity is an essential step in the loading of ApoA-1 with phospholipids for HDL formation.
-
differential phospholipid substrates and directional transport by atp binding cassette proteins abca1 ABCA7 and abca4 and disease causing mutants
Journal of Biological Chemistry, 2013Co-Authors: Faraz Quazi, Robert S MoldayAbstract:ABCA1, ABCA7, and ABCA4 are members of the ABCA subfamily of ATP-binding cassette transporters that share extensive sequence and structural similarity. Mutations in ABCA1 cause Tangier disease characterized by defective cholesterol homeostasis and high density lipoprotein (HDL) deficiency. Mutations in ABCA4 are responsible for Stargardt disease, a degenerative disorder associated with severe loss in central vision. Although cell-based studies have implicated ABCA proteins in lipid transport, the substrates and direction of transport have not been firmly established. We have purified and reconstituted ABCA1, ABCA7, and ABCA4 into liposomes for fluorescent-lipid transport studies. ABCA1 actively exported or flipped phosphatidylcholine, phosphatidylserine, and sphingomyelin from the cytoplasmic to the exocytoplasmic leaflet of membranes, whereas ABCA7 preferentially exported phosphatidylserine. In contrast, ABCA4 transported phosphatidylethanolamine in the reverse direction. The same phospholipids stimulated the ATPase activity of these ABCA transporters. The transport and ATPase activities of ABCA1 and ABCA4 were reduced by 25% in the presence of 20% cholesterol. Nine ABCA1 Tangier mutants and the corresponding ABCA4 Stargardt mutants showed significantly reduced phospholipid transport activity and subcellular mislocalization. These studies provide the first direct evidence for ABCA1 and ABCA7 functioning as phospholipid transporters and suggest that this activity is an essential step in the loading of apoA-1 with phospholipids for HDL formation.
-
the role of the photoreceptor abc transporter abca4 in lipid transport and stargardt macular degeneration
Biochimica et Biophysica Acta, 2009Co-Authors: Robert S Molday, Ming Zhong, Faraz QuaziAbstract:Abstract ABCA4 is a member of the ABCA subfamily of ATP binding cassette (ABC) transporters that is expressed in rod and cone photoreceptors of the vertebrate retina. ABCA4, also known as the Rim protein and ABCR, is a large 2273 amino acid glycoprotein organized as two tandem halves, each containing a single membrane spanning segment followed sequentially by a large exocytoplasmic domain, a multispanning membrane domain and a nucleotide binding domain. Over 500 mutations in the gene encoding ABCA4 are associated with a spectrum of related autosomal recessive retinal degenerative diseases including Stargardt macular degeneration, cone–rod dystrophy and a subset of retinitis pigmentosa. Biochemical studies on the purified ABCA4 together with analysis of abca4 knockout mice and patients with Stargardt disease have implicated ABCA4 as a retinylidene-phosphatidylethanolamine transporter that facilitates the removal of potentially reactive retinal derivatives from photoreceptors following photoexcitation. Knowledge of the genetic and molecular basis for ABCA4 related retinal degenerative diseases is being used to develop rationale therapeutic treatments for this set of disorders.