Absorption-Distribution-Metabolism-Excretion Study

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 3218955 Experts worldwide ranked by ideXlab platform

O. Michalak - One of the best experts on this subject based on the ideXlab platform.

  • Synthesis and anti-tumour, immunomodulating activity of diosgenin and tigogenin conjugates.
    The Journal of steroid biochemistry and molecular biology, 2020
    Co-Authors: O. Michalak, P. Krzeczyński, Marcin Cieślak, Piotr Cmoch, M. Cybulski, Karolina Królewska-golińska, Julia Kaźmierczak-barańska, Bartosz Trzaskowski, K. Ostrowska
    Abstract:

    A series of novel diosgenin (DSG) and tigogenin (TGG) derivatives with diosgenin or tigogenin steroid aglycons linked to levulinic and 3,4-dihydroxycinnamic acids, dipeptides and various amino acids by an ester bond at the C3-oxygen atom of the steroid skeleton has been synthesized. Diosgenyl esters have been prepared by an esterification reaction (DCC/DMAP) of diosgenin with the corresponding acids. All analogues have been evaluated in vitro for their antiproliferative profile against cancer cell lines (MCF-7, MDA-MB-231, PC-3) and human umbilical vein endothelial cells (HUVEC). Analogue2c (l-serine derivative of TGG), the best representative of the series showed IC50 of 1.5 μM (MCF-7), and induced apoptosis in MCF-7 by activating caspase-3/7. The immunomodulatory properties of six synthesized analogues have been determined by examining their effects on the expression of cytokine genes essential for the functioning of the human immune system (IL-1, IL-4, IL-10, IL-12 and TNF-α). Biological evaluation has revealed that new compounds 4c and 16a do not induce the expression of pro-inflammatory cytokines in THP-1 cells after the lipopolysaccharide (LPS) stimulation. They also stimulate the expression of anti-inflammatory IL-10 that acts stronger than diosgenin itself. An in silico ADME properties(absorption, distribution, metabolism, excretion) Study was also performed to predict the pharmacokinetic profile of the synthesized compounds. To shed light on the molecular interactions between the synthesized compounds and the glucocorticoid receptor and the estrogen receptor, 2c, 4c and 16a compounds were docked into the active binding sites of these receptors. The in silico and in vitro data suggested that this new group of compounds might be considered as a promising scaffold for further modification of more potent and selective anticancer and immunomodulatory agents.

P. Krzeczyński - One of the best experts on this subject based on the ideXlab platform.

  • Synthesis and anti-tumour, immunomodulating activity of diosgenin and tigogenin conjugates.
    The Journal of steroid biochemistry and molecular biology, 2020
    Co-Authors: O. Michalak, P. Krzeczyński, Marcin Cieślak, Piotr Cmoch, M. Cybulski, Karolina Królewska-golińska, Julia Kaźmierczak-barańska, Bartosz Trzaskowski, K. Ostrowska
    Abstract:

    A series of novel diosgenin (DSG) and tigogenin (TGG) derivatives with diosgenin or tigogenin steroid aglycons linked to levulinic and 3,4-dihydroxycinnamic acids, dipeptides and various amino acids by an ester bond at the C3-oxygen atom of the steroid skeleton has been synthesized. Diosgenyl esters have been prepared by an esterification reaction (DCC/DMAP) of diosgenin with the corresponding acids. All analogues have been evaluated in vitro for their antiproliferative profile against cancer cell lines (MCF-7, MDA-MB-231, PC-3) and human umbilical vein endothelial cells (HUVEC). Analogue2c (l-serine derivative of TGG), the best representative of the series showed IC50 of 1.5 μM (MCF-7), and induced apoptosis in MCF-7 by activating caspase-3/7. The immunomodulatory properties of six synthesized analogues have been determined by examining their effects on the expression of cytokine genes essential for the functioning of the human immune system (IL-1, IL-4, IL-10, IL-12 and TNF-α). Biological evaluation has revealed that new compounds 4c and 16a do not induce the expression of pro-inflammatory cytokines in THP-1 cells after the lipopolysaccharide (LPS) stimulation. They also stimulate the expression of anti-inflammatory IL-10 that acts stronger than diosgenin itself. An in silico ADME properties(absorption, distribution, metabolism, excretion) Study was also performed to predict the pharmacokinetic profile of the synthesized compounds. To shed light on the molecular interactions between the synthesized compounds and the glucocorticoid receptor and the estrogen receptor, 2c, 4c and 16a compounds were docked into the active binding sites of these receptors. The in silico and in vitro data suggested that this new group of compounds might be considered as a promising scaffold for further modification of more potent and selective anticancer and immunomodulatory agents.

Marcin Cieślak - One of the best experts on this subject based on the ideXlab platform.

  • Synthesis and anti-tumour, immunomodulating activity of diosgenin and tigogenin conjugates.
    The Journal of steroid biochemistry and molecular biology, 2020
    Co-Authors: O. Michalak, P. Krzeczyński, Marcin Cieślak, Piotr Cmoch, M. Cybulski, Karolina Królewska-golińska, Julia Kaźmierczak-barańska, Bartosz Trzaskowski, K. Ostrowska
    Abstract:

    A series of novel diosgenin (DSG) and tigogenin (TGG) derivatives with diosgenin or tigogenin steroid aglycons linked to levulinic and 3,4-dihydroxycinnamic acids, dipeptides and various amino acids by an ester bond at the C3-oxygen atom of the steroid skeleton has been synthesized. Diosgenyl esters have been prepared by an esterification reaction (DCC/DMAP) of diosgenin with the corresponding acids. All analogues have been evaluated in vitro for their antiproliferative profile against cancer cell lines (MCF-7, MDA-MB-231, PC-3) and human umbilical vein endothelial cells (HUVEC). Analogue2c (l-serine derivative of TGG), the best representative of the series showed IC50 of 1.5 μM (MCF-7), and induced apoptosis in MCF-7 by activating caspase-3/7. The immunomodulatory properties of six synthesized analogues have been determined by examining their effects on the expression of cytokine genes essential for the functioning of the human immune system (IL-1, IL-4, IL-10, IL-12 and TNF-α). Biological evaluation has revealed that new compounds 4c and 16a do not induce the expression of pro-inflammatory cytokines in THP-1 cells after the lipopolysaccharide (LPS) stimulation. They also stimulate the expression of anti-inflammatory IL-10 that acts stronger than diosgenin itself. An in silico ADME properties(absorption, distribution, metabolism, excretion) Study was also performed to predict the pharmacokinetic profile of the synthesized compounds. To shed light on the molecular interactions between the synthesized compounds and the glucocorticoid receptor and the estrogen receptor, 2c, 4c and 16a compounds were docked into the active binding sites of these receptors. The in silico and in vitro data suggested that this new group of compounds might be considered as a promising scaffold for further modification of more potent and selective anticancer and immunomodulatory agents.

Piotr Cmoch - One of the best experts on this subject based on the ideXlab platform.

  • Synthesis and anti-tumour, immunomodulating activity of diosgenin and tigogenin conjugates.
    The Journal of steroid biochemistry and molecular biology, 2020
    Co-Authors: O. Michalak, P. Krzeczyński, Marcin Cieślak, Piotr Cmoch, M. Cybulski, Karolina Królewska-golińska, Julia Kaźmierczak-barańska, Bartosz Trzaskowski, K. Ostrowska
    Abstract:

    A series of novel diosgenin (DSG) and tigogenin (TGG) derivatives with diosgenin or tigogenin steroid aglycons linked to levulinic and 3,4-dihydroxycinnamic acids, dipeptides and various amino acids by an ester bond at the C3-oxygen atom of the steroid skeleton has been synthesized. Diosgenyl esters have been prepared by an esterification reaction (DCC/DMAP) of diosgenin with the corresponding acids. All analogues have been evaluated in vitro for their antiproliferative profile against cancer cell lines (MCF-7, MDA-MB-231, PC-3) and human umbilical vein endothelial cells (HUVEC). Analogue2c (l-serine derivative of TGG), the best representative of the series showed IC50 of 1.5 μM (MCF-7), and induced apoptosis in MCF-7 by activating caspase-3/7. The immunomodulatory properties of six synthesized analogues have been determined by examining their effects on the expression of cytokine genes essential for the functioning of the human immune system (IL-1, IL-4, IL-10, IL-12 and TNF-α). Biological evaluation has revealed that new compounds 4c and 16a do not induce the expression of pro-inflammatory cytokines in THP-1 cells after the lipopolysaccharide (LPS) stimulation. They also stimulate the expression of anti-inflammatory IL-10 that acts stronger than diosgenin itself. An in silico ADME properties(absorption, distribution, metabolism, excretion) Study was also performed to predict the pharmacokinetic profile of the synthesized compounds. To shed light on the molecular interactions between the synthesized compounds and the glucocorticoid receptor and the estrogen receptor, 2c, 4c and 16a compounds were docked into the active binding sites of these receptors. The in silico and in vitro data suggested that this new group of compounds might be considered as a promising scaffold for further modification of more potent and selective anticancer and immunomodulatory agents.

M. Cybulski - One of the best experts on this subject based on the ideXlab platform.

  • Synthesis and anti-tumour, immunomodulating activity of diosgenin and tigogenin conjugates.
    The Journal of steroid biochemistry and molecular biology, 2020
    Co-Authors: O. Michalak, P. Krzeczyński, Marcin Cieślak, Piotr Cmoch, M. Cybulski, Karolina Królewska-golińska, Julia Kaźmierczak-barańska, Bartosz Trzaskowski, K. Ostrowska
    Abstract:

    A series of novel diosgenin (DSG) and tigogenin (TGG) derivatives with diosgenin or tigogenin steroid aglycons linked to levulinic and 3,4-dihydroxycinnamic acids, dipeptides and various amino acids by an ester bond at the C3-oxygen atom of the steroid skeleton has been synthesized. Diosgenyl esters have been prepared by an esterification reaction (DCC/DMAP) of diosgenin with the corresponding acids. All analogues have been evaluated in vitro for their antiproliferative profile against cancer cell lines (MCF-7, MDA-MB-231, PC-3) and human umbilical vein endothelial cells (HUVEC). Analogue2c (l-serine derivative of TGG), the best representative of the series showed IC50 of 1.5 μM (MCF-7), and induced apoptosis in MCF-7 by activating caspase-3/7. The immunomodulatory properties of six synthesized analogues have been determined by examining their effects on the expression of cytokine genes essential for the functioning of the human immune system (IL-1, IL-4, IL-10, IL-12 and TNF-α). Biological evaluation has revealed that new compounds 4c and 16a do not induce the expression of pro-inflammatory cytokines in THP-1 cells after the lipopolysaccharide (LPS) stimulation. They also stimulate the expression of anti-inflammatory IL-10 that acts stronger than diosgenin itself. An in silico ADME properties(absorption, distribution, metabolism, excretion) Study was also performed to predict the pharmacokinetic profile of the synthesized compounds. To shed light on the molecular interactions between the synthesized compounds and the glucocorticoid receptor and the estrogen receptor, 2c, 4c and 16a compounds were docked into the active binding sites of these receptors. The in silico and in vitro data suggested that this new group of compounds might be considered as a promising scaffold for further modification of more potent and selective anticancer and immunomodulatory agents.