Acetophenone Derivative

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 504 Experts worldwide ranked by ideXlab platform

Patrick Masson - One of the best experts on this subject based on the ideXlab platform.

  • 1 3 tert butylphenyl 2 2 2 trifluoroethanone as a potent transition state analogue slow binding inhibitor of human acetylcholinesterase kinetic md and qm mm studies
    Biomolecules, 2020
    Co-Authors: Irina V Zueva, Sofya V Lushchekina, Ian R Pottie, Sultan Darvesh, Patrick Masson
    Abstract:

    Kinetic studies and molecular modeling of human acetylcholinesterase (AChE) inhibition by a fluorinated Acetophenone Derivative, 1-(3-tert-butylphenyl)-2,2,2-trifluoroethanone (TFK), were performed. Fast reversible inhibition of AChE by TFK is of competitive type with Ki = 5.15 nM. However, steady state of inhibition is reached slowly. Kinetic analysis showed that TFK is a slow-binding inhibitor (SBI) of type B with Ki* = 0.53 nM. Reversible binding of TFK provides a long residence time, τ = 20 min, on AChE. After binding, TFK acylates the active serine, forming an hemiketal. Then, disruption of hemiketal (deacylation) is slow. AChE recovers full activity in approximately 40 min. Molecular docking and MD simulations depicted the different steps. It was shown that TFK binds first to the peripheral anionic site. Then, subsequent slow induced-fit step enlarged the gorge, allowing tight adjustment into the catalytic active site. Modeling of interactions between TFK and AChE active site by QM/MM showed that the “isomerization” step of enzyme-inhibitor complex leads to a complex similar to substrate tetrahedral intermediate, a so-called “transition state analog”, followed by a labile covalent intermediate. SBIs of AChE show prolonged pharmacological efficacy. Thus, this fluoroalkylketone intended for neuroimaging, could be of interest in palliative therapy of Alzheimer’s disease and protection of central AChE against organophosphorus compounds.

Irina V Zueva - One of the best experts on this subject based on the ideXlab platform.

  • 1 3 tert butylphenyl 2 2 2 trifluoroethanone as a potent transition state analogue slow binding inhibitor of human acetylcholinesterase kinetic md and qm mm studies
    Biomolecules, 2020
    Co-Authors: Irina V Zueva, Sofya V Lushchekina, Ian R Pottie, Sultan Darvesh, Patrick Masson
    Abstract:

    Kinetic studies and molecular modeling of human acetylcholinesterase (AChE) inhibition by a fluorinated Acetophenone Derivative, 1-(3-tert-butylphenyl)-2,2,2-trifluoroethanone (TFK), were performed. Fast reversible inhibition of AChE by TFK is of competitive type with Ki = 5.15 nM. However, steady state of inhibition is reached slowly. Kinetic analysis showed that TFK is a slow-binding inhibitor (SBI) of type B with Ki* = 0.53 nM. Reversible binding of TFK provides a long residence time, τ = 20 min, on AChE. After binding, TFK acylates the active serine, forming an hemiketal. Then, disruption of hemiketal (deacylation) is slow. AChE recovers full activity in approximately 40 min. Molecular docking and MD simulations depicted the different steps. It was shown that TFK binds first to the peripheral anionic site. Then, subsequent slow induced-fit step enlarged the gorge, allowing tight adjustment into the catalytic active site. Modeling of interactions between TFK and AChE active site by QM/MM showed that the “isomerization” step of enzyme-inhibitor complex leads to a complex similar to substrate tetrahedral intermediate, a so-called “transition state analog”, followed by a labile covalent intermediate. SBIs of AChE show prolonged pharmacological efficacy. Thus, this fluoroalkylketone intended for neuroimaging, could be of interest in palliative therapy of Alzheimer’s disease and protection of central AChE against organophosphorus compounds.

Sultan Darvesh - One of the best experts on this subject based on the ideXlab platform.

  • 1 3 tert butylphenyl 2 2 2 trifluoroethanone as a potent transition state analogue slow binding inhibitor of human acetylcholinesterase kinetic md and qm mm studies
    Biomolecules, 2020
    Co-Authors: Irina V Zueva, Sofya V Lushchekina, Ian R Pottie, Sultan Darvesh, Patrick Masson
    Abstract:

    Kinetic studies and molecular modeling of human acetylcholinesterase (AChE) inhibition by a fluorinated Acetophenone Derivative, 1-(3-tert-butylphenyl)-2,2,2-trifluoroethanone (TFK), were performed. Fast reversible inhibition of AChE by TFK is of competitive type with Ki = 5.15 nM. However, steady state of inhibition is reached slowly. Kinetic analysis showed that TFK is a slow-binding inhibitor (SBI) of type B with Ki* = 0.53 nM. Reversible binding of TFK provides a long residence time, τ = 20 min, on AChE. After binding, TFK acylates the active serine, forming an hemiketal. Then, disruption of hemiketal (deacylation) is slow. AChE recovers full activity in approximately 40 min. Molecular docking and MD simulations depicted the different steps. It was shown that TFK binds first to the peripheral anionic site. Then, subsequent slow induced-fit step enlarged the gorge, allowing tight adjustment into the catalytic active site. Modeling of interactions between TFK and AChE active site by QM/MM showed that the “isomerization” step of enzyme-inhibitor complex leads to a complex similar to substrate tetrahedral intermediate, a so-called “transition state analog”, followed by a labile covalent intermediate. SBIs of AChE show prolonged pharmacological efficacy. Thus, this fluoroalkylketone intended for neuroimaging, could be of interest in palliative therapy of Alzheimer’s disease and protection of central AChE against organophosphorus compounds.

Ian R Pottie - One of the best experts on this subject based on the ideXlab platform.

  • 1 3 tert butylphenyl 2 2 2 trifluoroethanone as a potent transition state analogue slow binding inhibitor of human acetylcholinesterase kinetic md and qm mm studies
    Biomolecules, 2020
    Co-Authors: Irina V Zueva, Sofya V Lushchekina, Ian R Pottie, Sultan Darvesh, Patrick Masson
    Abstract:

    Kinetic studies and molecular modeling of human acetylcholinesterase (AChE) inhibition by a fluorinated Acetophenone Derivative, 1-(3-tert-butylphenyl)-2,2,2-trifluoroethanone (TFK), were performed. Fast reversible inhibition of AChE by TFK is of competitive type with Ki = 5.15 nM. However, steady state of inhibition is reached slowly. Kinetic analysis showed that TFK is a slow-binding inhibitor (SBI) of type B with Ki* = 0.53 nM. Reversible binding of TFK provides a long residence time, τ = 20 min, on AChE. After binding, TFK acylates the active serine, forming an hemiketal. Then, disruption of hemiketal (deacylation) is slow. AChE recovers full activity in approximately 40 min. Molecular docking and MD simulations depicted the different steps. It was shown that TFK binds first to the peripheral anionic site. Then, subsequent slow induced-fit step enlarged the gorge, allowing tight adjustment into the catalytic active site. Modeling of interactions between TFK and AChE active site by QM/MM showed that the “isomerization” step of enzyme-inhibitor complex leads to a complex similar to substrate tetrahedral intermediate, a so-called “transition state analog”, followed by a labile covalent intermediate. SBIs of AChE show prolonged pharmacological efficacy. Thus, this fluoroalkylketone intended for neuroimaging, could be of interest in palliative therapy of Alzheimer’s disease and protection of central AChE against organophosphorus compounds.

Sofya V Lushchekina - One of the best experts on this subject based on the ideXlab platform.

  • 1 3 tert butylphenyl 2 2 2 trifluoroethanone as a potent transition state analogue slow binding inhibitor of human acetylcholinesterase kinetic md and qm mm studies
    Biomolecules, 2020
    Co-Authors: Irina V Zueva, Sofya V Lushchekina, Ian R Pottie, Sultan Darvesh, Patrick Masson
    Abstract:

    Kinetic studies and molecular modeling of human acetylcholinesterase (AChE) inhibition by a fluorinated Acetophenone Derivative, 1-(3-tert-butylphenyl)-2,2,2-trifluoroethanone (TFK), were performed. Fast reversible inhibition of AChE by TFK is of competitive type with Ki = 5.15 nM. However, steady state of inhibition is reached slowly. Kinetic analysis showed that TFK is a slow-binding inhibitor (SBI) of type B with Ki* = 0.53 nM. Reversible binding of TFK provides a long residence time, τ = 20 min, on AChE. After binding, TFK acylates the active serine, forming an hemiketal. Then, disruption of hemiketal (deacylation) is slow. AChE recovers full activity in approximately 40 min. Molecular docking and MD simulations depicted the different steps. It was shown that TFK binds first to the peripheral anionic site. Then, subsequent slow induced-fit step enlarged the gorge, allowing tight adjustment into the catalytic active site. Modeling of interactions between TFK and AChE active site by QM/MM showed that the “isomerization” step of enzyme-inhibitor complex leads to a complex similar to substrate tetrahedral intermediate, a so-called “transition state analog”, followed by a labile covalent intermediate. SBIs of AChE show prolonged pharmacological efficacy. Thus, this fluoroalkylketone intended for neuroimaging, could be of interest in palliative therapy of Alzheimer’s disease and protection of central AChE against organophosphorus compounds.