Aedes vexans - Explore the Science & Experts | ideXlab

Scan Science and Technology

Contact Leading Edge Experts & Companies

Aedes vexans

The Experts below are selected from a list of 240 Experts worldwide ranked by ideXlab platform

Aedes vexans – Free Register to Access Experts & Abstracts

Mawlouth Diallo – One of the best experts on this subject based on the ideXlab platform.

  • Modelling hotspots of the two dominant Rift Valley fever vectors (Aedes vexans and Culex poicilipes) in Barkédji, Sénégal.
    Parasites & vectors, 2016
    Co-Authors: Talla, Jacques André Ndione, Diawo Diallo, Ibrahima Dia, Andrew P. Morse, Aliou Diop, Mawlouth Diallo
    Abstract:

    Background Climatic and environmental variables were used successfully by using models to predict Rift Valley fever (RVF) virus outbreaks in East Africa. However, these models are not replicable in the West African context due to a likely difference of the dynamic of the virus emergence. For these reasons specific models mainly oriented to the risk mapping have been developed. Hence, the areas of high vector pressure or virus activity are commonly predicted. However, the factors impacting their occurrence are poorly investigated and still unknown. In this study, we examine the impact of climate and environmental factors on the likelihood of occurrence of the two main vectors of RVF in West Africa (Aedes vexans and Culex poicilipes) hotspots.

  • Aspects of bioecology of two Rift Valley Fever Virus vectors in Senegal (West Africa): Aedes vexans and Culex poicilipes (Diptera: Culicidae).
    Journal of medical entomology, 2005
    Co-Authors: Diawo Diallo, Ibrahima Dia, Mouhamed Fadel Kébé, Mawlouth Diallo
    Abstract:

    Abstract The dispersal, population dynamics, and age structure of two Rift Valley Fever Virus (Phlebovirus: Bunyaviridae) (RVFV) vectors, Aedes vexans Meigen and Culex poicilipes Theobald, were investigated in northern Senegal. The main objective was to investigate possible factors that mediate RVFV emergence and propagation at a site where humans and livestock live in proximity to temporary surface pools. In mark–release–recapture studies, recapture rates of 0.18% (156/85,500) and 3.46% (201/5,800) were obtained for Ae. vexans and Cx. poicilipes, respectively. The number of mosquitoes recaptured decreased with increasing distance from the release point and over time. The estimated daily survival rate for released females ranged from 91 to 96% for Ae. vexans and 70–79% for Cx. poicilipes. The maximum time after release when marked mosquitoes were collected was 23 and 12 d for Ae. vexans and Cx. poicilipes, respectively. The maximum distances from the release point that marked females were recaptured was 6…

  • Short report: Rift Valley fever in western Africa: isolations from Aedes mosquitoes during an interepizootic period.
    The American journal of tropical medicine and hygiene, 1995
    Co-Authors: Didier Fontenille, Mawlouth Diallo, Moumouni Traore-lamizana, Hervé Zeller, M. Mondo, J.p. Digoutte
    Abstract:

    Thirteen strains of Rift Valley fever virus were isolated from Aedes vexans and Ae. ochraceus mosquitoes collected in October and November 1993 in northern Senegal. Entomologic and serologic data show that the risk of a new epizootic is increasing in this region.

Diawo Diallo – One of the best experts on this subject based on the ideXlab platform.

  • Modelling hotspots of the two dominant Rift Valley fever vectors (Aedes vexans and Culex poicilipes) in Barkédji, Sénégal.
    Parasites & vectors, 2016
    Co-Authors: Talla, Jacques André Ndione, Diawo Diallo, Ibrahima Dia, Andrew P. Morse, Aliou Diop, Mawlouth Diallo
    Abstract:

    Background Climatic and environmental variables were used successfully by using models to predict Rift Valley fever (RVF) virus outbreaks in East Africa. However, these models are not replicable in the West African context due to a likely difference of the dynamic of the virus emergence. For these reasons specific models mainly oriented to the risk mapping have been developed. Hence, the areas of high vector pressure or virus activity are commonly predicted. However, the factors impacting their occurrence are poorly investigated and still unknown. In this study, we examine the impact of climate and environmental factors on the likelihood of occurrence of the two main vectors of RVF in West Africa (Aedes vexans and Culex poicilipes) hotspots.

  • Vector competence of Aedes vexans (Meigen), Culex poicilipes (Theobald) and Cx. quinquefasciatus Say from Senegal for West and East African lineages of Rift Valley fever virus
    Parasites & vectors, 2016
    Co-Authors: El Hadji Ndiaye, Gamou Fall, Talla, Diawo Diallo, Ibrahima Dia, Alioune Gaye, Ndeye Sakha Bob, Tidiane Diagne, Alain Kohl
    Abstract:

    Rift Valley fever virus (RVFV; Phlebovirus, Bunyaviridae) is a mosquito-borne, zoonotic pathogen. In Senegal, RVFV was first isolated in 1974 from Aedes dalzieli (Theobald) and thereafter from Ae. fowleri (de Charmoy), Ae. ochraceus Theobald, Ae. vexans (Meigen), Culex poicilipes (Theobald), Mansonia africana (Theobald) and Ma. uniformis (Theobald). However, the vector competence of these local species has never been demonstrated making hypothetical the transmission cycle proposed for West Africa based on serological data and mosquito isolates. Aedes vexans and Cx. poicilipes, two common mosquito species most frequently associated with RVFV in Senegal, and Cx. quinquefasciatus, the most common domestic species, were assessed after oral feeding with three RVFV strains of the West and East/central African lineages. Fully engorged mosquitoes (420 Ae. vexans, 563 Cx. quinquefasciatus and 380 Cx. poicilipes) were maintained at 27 ± 1 °C and 70-80% relative humidity. The saliva, legs/wings and bodies were tested individually for the RVFV genome using real-time RT-PCR at 5, 10, 15 and 20 days post exposure (dpe) to estimate the infection, dissemination, and transmission rates. Genotypic characterisation of the 3 strains used were performed to identify factors underlying the different patterns of transmission. The infection rates varied between 30.0-85.0% for Ae. vexans, 3.3-27% for Cx. quinquefasciatus and 8.3-46.7% for Cx. poicilipes, and the dissemination rates varied between 10.5-37% for Ae. vexans, 9.5-28.6% for Cx. quinquefasciatus and 3.0-40.9% for Cx. poicilipes. However only the East African lineage was transmitted, with transmission rates varying between 13.3-33.3% in Ae. vexans, 50% in Cx. quinquefasciatus and 11.1% in Cx. poicilipes. Culex mosquitoes were less susceptible to infection than Ae. vexans. Compared to other strains, amino acid variation in the NSs M segment proteins of the East African RVFV lineage human-derived strain SH172805, might explain the differences in transmission potential. Our findings revealed that all the species tested were competent for RVFV with a significant more important role of Ae. vexans compared to Culex species and a highest potential of the East African lineage to be transmitted.

  • Aspects of bioecology of two Rift Valley Fever Virus vectors in Senegal (West Africa): Aedes vexans and Culex poicilipes (Diptera: Culicidae).
    Journal of medical entomology, 2005
    Co-Authors: Diawo Diallo, Ibrahima Dia, Mouhamed Fadel Kébé, Mawlouth Diallo
    Abstract:

    Abstract The dispersal, population dynamics, and age structure of two Rift Valley Fever Virus (Phlebovirus: Bunyaviridae) (RVFV) vectors, Aedes vexans Meigen and Culex poicilipes Theobald, were investigated in northern Senegal. The main objective was to investigate possible factors that mediate RVFV emergence and propagation at a site where humans and livestock live in proximity to temporary surface pools. In mark–release–recapture studies, recapture rates of 0.18% (156/85,500) and 3.46% (201/5,800) were obtained for Ae. vexans and Cx. poicilipes, respectively. The number of mosquitoes recaptured decreased with increasing distance from the release point and over time. The estimated daily survival rate for released females ranged from 91 to 96% for Ae. vexans and 70–79% for Cx. poicilipes. The maximum time after release when marked mosquitoes were collected was 23 and 12 d for Ae. vexans and Cx. poicilipes, respectively. The maximum distances from the release point that marked females were recaptured was 6…

El Hadji Ndiaye – One of the best experts on this subject based on the ideXlab platform.

  • Identification and RNAi profile of a novel iflavirus infecting Senegalese Aedes vexans arabiensis mosquitoes
    Viruses, 2020
    Co-Authors: Rhys Parry, Fanny Naccache, El Hadji Ndiaye, Gamou Fall, Ilaria Castelli, Renke Lühken, Jolyon M. Medlock, Benjamin Cull, Jenny C. Hesson, Fabrizio Montarsi
    Abstract:

    The inland floodwater mosquito Aedes vexans (Meigen, 1830) is a competent vector of numerous arthropod-borne viruses such as Rift Valley fever virus (Phenuiviridae) and Zika virus (Flaviviridae). Aedes vexans spp. have widespread Afrotropical distribution and are common European cosmopolitan mosquitoes. We examined the virome of Ae. vexans arabiensis samples from Barkédji village, Senegal, with small RNA sequencing, bioinformatic analysis, and RT-PCR screening. We identified a novel 9494 nt iflavirus (Picornaviridae) designated here as Aedes vexans iflavirus (AvIFV). Annotation of the AvIFV genome reveals a 2782 amino acid polyprotein with iflavirus protein domain architecture and typical iflavirus 5′ internal ribosomal entry site and 3′ poly-A tail. Aedes vexans iflavirus is most closely related to a partial virus sequence from Venturia canescens (a parasitoid wasp) with 56.77% pairwise amino acid identity. Analysis of AvIFV-derived small RNAs suggests that AvIFV is targeted by the exogenous RNA interference pathway but not the PIWI-interacting RNA response, as ~60% of AvIFV reads corresponded to 21 nt Dicer-2 virus-derived small RNAs and the 24-29 nt AvIFV read population did not exhibit a “ping-pong” signature. The RT-PCR screens of archival and current (circa 2011-2020) Ae. vexans arabiensis laboratory samples and wild-caught mosquitoes from Barkédji suggest that AvIFV is ubiquitous in these mosquitoes. Further, we screened wild-caught European Ae. vexans samples from Germany, the United Kingdom, Italy, and Sweden, all of which tested negative for AvIFV RNA. This report provides insight into the diversity of commensal Aedes viruses and the host RNAi response towards iflaviruses.

  • identification and rnai profile of a novel iflavirus infecting senegalese Aedes vexans arabiensis mosquitoes
    Viruses, 2020
    Co-Authors: Rhys Parry, Fanny Naccache, El Hadji Ndiaye, Gamou Fall, Ilaria Castelli, Renke Lühken, Jolyon M. Medlock, Benjamin Cull, Jenny C. Hesson, Fabrizio Montarsi
    Abstract:

    The inland floodwater mosquito Aedes vexans (Meigen, 1830) is a competent vector of numerous arthropod-borne viruses such as Rift Valley fever virus (Phenuiviridae) and Zika virus (Flaviviridae). Aedes vexans spp. have widespread Afrotropical distribution and are common European cosmopolitan mosquitoes. We examined the virome of Ae. vexans arabiensis samples from Barkedji village, Senegal, with small RNA sequencing, bioinformatic analysis, and RT-PCR screening. We identified a novel 9494 nt iflavirus (Picornaviridae) designated here as Aedes vexans iflavirus (AvIFV). Annotation of the AvIFV genome reveals a 2782 amino acid polyprotein with iflavirus protein domain architecture and typical iflavirus 5′ internal ribosomal entry site and 3′ poly-A tail. Aedes vexans iflavirus is most closely related to a partial virus sequence from Venturia canescens (a parasitoid wasp) with 56.77% pairwise amino acid identity. Analysis of AvIFV-derived small RNAs suggests that AvIFV is targeted by the exogenous RNA interference pathway but not the PIWI-interacting RNA response, as ~60% of AvIFV reads corresponded to 21 nt Dicer-2 virus-derived small RNAs and the 24-29 nt AvIFV read population did not exhibit a “ping-pong” signature. The RT-PCR screens of archival and current (circa 2011-2020) Ae. vexans arabiensis laboratory samples and wild-caught mosquitoes from Barkedji suggest that AvIFV is ubiquitous in these mosquitoes. Further, we screened wild-caught European Ae. vexans samples from Germany, the United Kingdom, Italy, and Sweden, all of which tested negative for AvIFV RNA. This report provides insight into the diversity of commensal Aedes viruses and the host RNAi response towards iflaviruses.

  • Vector competence of Aedes vexans (Meigen), Culex poicilipes (Theobald) and Cx. quinquefasciatus Say from Senegal for West and East African lineages of Rift Valley fever virus
    Parasites & vectors, 2016
    Co-Authors: El Hadji Ndiaye, Gamou Fall, Talla, Diawo Diallo, Ibrahima Dia, Alioune Gaye, Ndeye Sakha Bob, Tidiane Diagne, Alain Kohl
    Abstract:

    Rift Valley fever virus (RVFV; Phlebovirus, Bunyaviridae) is a mosquito-borne, zoonotic pathogen. In Senegal, RVFV was first isolated in 1974 from Aedes dalzieli (Theobald) and thereafter from Ae. fowleri (de Charmoy), Ae. ochraceus Theobald, Ae. vexans (Meigen), Culex poicilipes (Theobald), Mansonia africana (Theobald) and Ma. uniformis (Theobald). However, the vector competence of these local species has never been demonstrated making hypothetical the transmission cycle proposed for West Africa based on serological data and mosquito isolates. Aedes vexans and Cx. poicilipes, two common mosquito species most frequently associated with RVFV in Senegal, and Cx. quinquefasciatus, the most common domestic species, were assessed after oral feeding with three RVFV strains of the West and East/central African lineages. Fully engorged mosquitoes (420 Ae. vexans, 563 Cx. quinquefasciatus and 380 Cx. poicilipes) were maintained at 27 ± 1 °C and 70-80% relative humidity. The saliva, legs/wings and bodies were tested individually for the RVFV genome using real-time RT-PCR at 5, 10, 15 and 20 days post exposure (dpe) to estimate the infection, dissemination, and transmission rates. Genotypic characterisation of the 3 strains used were performed to identify factors underlying the different patterns of transmission. The infection rates varied between 30.0-85.0% for Ae. vexans, 3.3-27% for Cx. quinquefasciatus and 8.3-46.7% for Cx. poicilipes, and the dissemination rates varied between 10.5-37% for Ae. vexans, 9.5-28.6% for Cx. quinquefasciatus and 3.0-40.9% for Cx. poicilipes. However only the East African lineage was transmitted, with transmission rates varying between 13.3-33.3% in Ae. vexans, 50% in Cx. quinquefasciatus and 11.1% in Cx. poicilipes. Culex mosquitoes were less susceptible to infection than Ae. vexans. Compared to other strains, amino acid variation in the NSs M segment proteins of the East African RVFV lineage human-derived strain SH172805, might explain the differences in transmission potential. Our findings revealed that all the species tested were competent for RVFV with a significant more important role of Ae. vexans compared to Culex species and a highest potential of the East African lineage to be transmitted.

Gamou Fall – One of the best experts on this subject based on the ideXlab platform.

  • Identification and RNAi profile of a novel iflavirus infecting Senegalese Aedes vexans arabiensis mosquitoes
    Viruses, 2020
    Co-Authors: Rhys Parry, Fanny Naccache, El Hadji Ndiaye, Gamou Fall, Ilaria Castelli, Renke Lühken, Jolyon M. Medlock, Benjamin Cull, Jenny C. Hesson, Fabrizio Montarsi
    Abstract:

    The inland floodwater mosquito Aedes vexans (Meigen, 1830) is a competent vector of numerous arthropod-borne viruses such as Rift Valley fever virus (Phenuiviridae) and Zika virus (Flaviviridae). Aedes vexans spp. have widespread Afrotropical distribution and are common European cosmopolitan mosquitoes. We examined the virome of Ae. vexans arabiensis samples from Barkédji village, Senegal, with small RNA sequencing, bioinformatic analysis, and RT-PCR screening. We identified a novel 9494 nt iflavirus (Picornaviridae) designated here as Aedes vexans iflavirus (AvIFV). Annotation of the AvIFV genome reveals a 2782 amino acid polyprotein with iflavirus protein domain architecture and typical iflavirus 5′ internal ribosomal entry site and 3′ poly-A tail. Aedes vexans iflavirus is most closely related to a partial virus sequence from Venturia canescens (a parasitoid wasp) with 56.77% pairwise amino acid identity. Analysis of AvIFV-derived small RNAs suggests that AvIFV is targeted by the exogenous RNA interference pathway but not the PIWI-interacting RNA response, as ~60% of AvIFV reads corresponded to 21 nt Dicer-2 virus-derived small RNAs and the 24-29 nt AvIFV read population did not exhibit a “ping-pong” signature. The RT-PCR screens of archival and current (circa 2011-2020) Ae. vexans arabiensis laboratory samples and wild-caught mosquitoes from Barkédji suggest that AvIFV is ubiquitous in these mosquitoes. Further, we screened wild-caught European Ae. vexans samples from Germany, the United Kingdom, Italy, and Sweden, all of which tested negative for AvIFV RNA. This report provides insight into the diversity of commensal Aedes viruses and the host RNAi response towards iflaviruses.

  • identification and rnai profile of a novel iflavirus infecting senegalese Aedes vexans arabiensis mosquitoes
    Viruses, 2020
    Co-Authors: Rhys Parry, Fanny Naccache, El Hadji Ndiaye, Gamou Fall, Ilaria Castelli, Renke Lühken, Jolyon M. Medlock, Benjamin Cull, Jenny C. Hesson, Fabrizio Montarsi
    Abstract:

    The inland floodwater mosquito Aedes vexans (Meigen, 1830) is a competent vector of numerous arthropod-borne viruses such as Rift Valley fever virus (Phenuiviridae) and Zika virus (Flaviviridae). Aedes vexans spp. have widespread Afrotropical distribution and are common European cosmopolitan mosquitoes. We examined the virome of Ae. vexans arabiensis samples from Barkedji village, Senegal, with small RNA sequencing, bioinformatic analysis, and RT-PCR screening. We identified a novel 9494 nt iflavirus (Picornaviridae) designated here as Aedes vexans iflavirus (AvIFV). Annotation of the AvIFV genome reveals a 2782 amino acid polyprotein with iflavirus protein domain architecture and typical iflavirus 5′ internal ribosomal entry site and 3′ poly-A tail. Aedes vexans iflavirus is most closely related to a partial virus sequence from Venturia canescens (a parasitoid wasp) with 56.77% pairwise amino acid identity. Analysis of AvIFV-derived small RNAs suggests that AvIFV is targeted by the exogenous RNA interference pathway but not the PIWI-interacting RNA response, as ~60% of AvIFV reads corresponded to 21 nt Dicer-2 virus-derived small RNAs and the 24-29 nt AvIFV read population did not exhibit a “ping-pong” signature. The RT-PCR screens of archival and current (circa 2011-2020) Ae. vexans arabiensis laboratory samples and wild-caught mosquitoes from Barkedji suggest that AvIFV is ubiquitous in these mosquitoes. Further, we screened wild-caught European Ae. vexans samples from Germany, the United Kingdom, Italy, and Sweden, all of which tested negative for AvIFV RNA. This report provides insight into the diversity of commensal Aedes viruses and the host RNAi response towards iflaviruses.

  • Vector competence of Aedes vexans (Meigen), Culex poicilipes (Theobald) and Cx. quinquefasciatus Say from Senegal for West and East African lineages of Rift Valley fever virus
    Parasites & vectors, 2016
    Co-Authors: El Hadji Ndiaye, Gamou Fall, Talla, Diawo Diallo, Ibrahima Dia, Alioune Gaye, Ndeye Sakha Bob, Tidiane Diagne, Alain Kohl
    Abstract:

    Rift Valley fever virus (RVFV; Phlebovirus, Bunyaviridae) is a mosquito-borne, zoonotic pathogen. In Senegal, RVFV was first isolated in 1974 from Aedes dalzieli (Theobald) and thereafter from Ae. fowleri (de Charmoy), Ae. ochraceus Theobald, Ae. vexans (Meigen), Culex poicilipes (Theobald), Mansonia africana (Theobald) and Ma. uniformis (Theobald). However, the vector competence of these local species has never been demonstrated making hypothetical the transmission cycle proposed for West Africa based on serological data and mosquito isolates. Aedes vexans and Cx. poicilipes, two common mosquito species most frequently associated with RVFV in Senegal, and Cx. quinquefasciatus, the most common domestic species, were assessed after oral feeding with three RVFV strains of the West and East/central African lineages. Fully engorged mosquitoes (420 Ae. vexans, 563 Cx. quinquefasciatus and 380 Cx. poicilipes) were maintained at 27 ± 1 °C and 70-80% relative humidity. The saliva, legs/wings and bodies were tested individually for the RVFV genome using real-time RT-PCR at 5, 10, 15 and 20 days post exposure (dpe) to estimate the infection, dissemination, and transmission rates. Genotypic characterisation of the 3 strains used were performed to identify factors underlying the different patterns of transmission. The infection rates varied between 30.0-85.0% for Ae. vexans, 3.3-27% for Cx. quinquefasciatus and 8.3-46.7% for Cx. poicilipes, and the dissemination rates varied between 10.5-37% for Ae. vexans, 9.5-28.6% for Cx. quinquefasciatus and 3.0-40.9% for Cx. poicilipes. However only the East African lineage was transmitted, with transmission rates varying between 13.3-33.3% in Ae. vexans, 50% in Cx. quinquefasciatus and 11.1% in Cx. poicilipes. Culex mosquitoes were less susceptible to infection than Ae. vexans. Compared to other strains, amino acid variation in the NSs M segment proteins of the East African RVFV lineage human-derived strain SH172805, might explain the differences in transmission potential. Our findings revealed that all the species tested were competent for RVFV with a significant more important role of Ae. vexans compared to Culex species and a highest potential of the East African lineage to be transmitted.

Ibrahima Dia – One of the best experts on this subject based on the ideXlab platform.

  • Modelling hotspots of the two dominant Rift Valley fever vectors (Aedes vexans and Culex poicilipes) in Barkédji, Sénégal.
    Parasites & vectors, 2016
    Co-Authors: Talla, Jacques André Ndione, Diawo Diallo, Ibrahima Dia, Andrew P. Morse, Aliou Diop, Mawlouth Diallo
    Abstract:

    Background Climatic and environmental variables were used successfully by using models to predict Rift Valley fever (RVF) virus outbreaks in East Africa. However, these models are not replicable in the West African context due to a likely difference of the dynamic of the virus emergence. For these reasons specific models mainly oriented to the risk mapping have been developed. Hence, the areas of high vector pressure or virus activity are commonly predicted. However, the factors impacting their occurrence are poorly investigated and still unknown. In this study, we examine the impact of climate and environmental factors on the likelihood of occurrence of the two main vectors of RVF in West Africa (Aedes vexans and Culex poicilipes) hotspots.

  • Vector competence of Aedes vexans (Meigen), Culex poicilipes (Theobald) and Cx. quinquefasciatus Say from Senegal for West and East African lineages of Rift Valley fever virus
    Parasites & vectors, 2016
    Co-Authors: El Hadji Ndiaye, Gamou Fall, Talla, Diawo Diallo, Ibrahima Dia, Alioune Gaye, Ndeye Sakha Bob, Tidiane Diagne, Alain Kohl
    Abstract:

    Rift Valley fever virus (RVFV; Phlebovirus, Bunyaviridae) is a mosquito-borne, zoonotic pathogen. In Senegal, RVFV was first isolated in 1974 from Aedes dalzieli (Theobald) and thereafter from Ae. fowleri (de Charmoy), Ae. ochraceus Theobald, Ae. vexans (Meigen), Culex poicilipes (Theobald), Mansonia africana (Theobald) and Ma. uniformis (Theobald). However, the vector competence of these local species has never been demonstrated making hypothetical the transmission cycle proposed for West Africa based on serological data and mosquito isolates. Aedes vexans and Cx. poicilipes, two common mosquito species most frequently associated with RVFV in Senegal, and Cx. quinquefasciatus, the most common domestic species, were assessed after oral feeding with three RVFV strains of the West and East/central African lineages. Fully engorged mosquitoes (420 Ae. vexans, 563 Cx. quinquefasciatus and 380 Cx. poicilipes) were maintained at 27 ± 1 °C and 70-80% relative humidity. The saliva, legs/wings and bodies were tested individually for the RVFV genome using real-time RT-PCR at 5, 10, 15 and 20 days post exposure (dpe) to estimate the infection, dissemination, and transmission rates. Genotypic characterisation of the 3 strains used were performed to identify factors underlying the different patterns of transmission. The infection rates varied between 30.0-85.0% for Ae. vexans, 3.3-27% for Cx. quinquefasciatus and 8.3-46.7% for Cx. poicilipes, and the dissemination rates varied between 10.5-37% for Ae. vexans, 9.5-28.6% for Cx. quinquefasciatus and 3.0-40.9% for Cx. poicilipes. However only the East African lineage was transmitted, with transmission rates varying between 13.3-33.3% in Ae. vexans, 50% in Cx. quinquefasciatus and 11.1% in Cx. poicilipes. Culex mosquitoes were less susceptible to infection than Ae. vexans. Compared to other strains, amino acid variation in the NSs M segment proteins of the East African RVFV lineage human-derived strain SH172805, might explain the differences in transmission potential. Our findings revealed that all the species tested were competent for RVFV with a significant more important role of Ae. vexans compared to Culex species and a highest potential of the East African lineage to be transmitted.

  • Aspects of bioecology of two Rift Valley Fever Virus vectors in Senegal (West Africa): Aedes vexans and Culex poicilipes (Diptera: Culicidae).
    Journal of medical entomology, 2005
    Co-Authors: Diawo Diallo, Ibrahima Dia, Mouhamed Fadel Kébé, Mawlouth Diallo
    Abstract:

    Abstract The dispersal, population dynamics, and age structure of two Rift Valley Fever Virus (Phlebovirus: Bunyaviridae) (RVFV) vectors, Aedes vexans Meigen and Culex poicilipes Theobald, were investigated in northern Senegal. The main objective was to investigate possible factors that mediate RVFV emergence and propagation at a site where humans and livestock live in proximity to temporary surface pools. In mark–release–recapture studies, recapture rates of 0.18% (156/85,500) and 3.46% (201/5,800) were obtained for Ae. vexans and Cx. poicilipes, respectively. The number of mosquitoes recaptured decreased with increasing distance from the release point and over time. The estimated daily survival rate for released females ranged from 91 to 96% for Ae. vexans and 70–79% for Cx. poicilipes. The maximum time after release when marked mosquitoes were collected was 23 and 12 d for Ae. vexans and Cx. poicilipes, respectively. The maximum distances from the release point that marked females were recaptured was 6…