Aerodynamics

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 44766 Experts worldwide ranked by ideXlab platform

Xiong Liu - One of the best experts on this subject based on the ideXlab platform.

  • effects of aerodynamic damping on the tower load of offshore horizontal axis wind turbines
    Applied Energy, 2017
    Co-Authors: Xiong Liu, Ajit R Godbole, Yan Chen
    Abstract:

    Aerodynamic damping has an important effect on the dynamic response of offshore Horizontal Axis Wind Turbines (HAWTs). In this paper, an analysis of the loads on offshore HAWTs is presented. The analysis combines the Aerodynamics, hydrodynamics and structural dynamics of the structure, and includes the effects of aerodynamic damping. The aim is to better understand the role of aerodynamic damping during the interaction of wind and wave and the structure, and to quantitatively evaluate the effects of aerodynamic damping on the lifetime fatigue load on offshore HAWT towers. The aerodynamic loads are estimated using the Blade Element-Momentum (BEM) theory, including the effects of dynamic inflow and dynamic stall. The wave dynamics is estimated assuming ‘random sea state’ described by the JONSWAP spectrum, with wave loads calculated using Morison’s equation and water kinematics modelled using linear wave theory. Two aerodynamic damping models are proposed: (1) a model based on the analysis of the rotor Aerodynamics incorporating the tower-top motion of a constant-speed wind turbine, which is then modified for variable-speed wind turbines by introducing a correction factor; and (2) a model based on Salzmann and van der Tempel’s method (Salzmann and van der Tempel, 2005) to calculate the aerodynamic damping as the increase in the thrust per unit increase in the wind speed. The models are incorporated into a transient load analysis. The effects of aerodynamic damping on the lifetime fatigue loads of the tower are then investigated through load analysis of a 5MW offshore HAWT. In addition, the influence of different aerodynamic damping calculation methods on the prediction of fatigue loads is studied.

Yan Chen - One of the best experts on this subject based on the ideXlab platform.

  • effects of aerodynamic damping on the tower load of offshore horizontal axis wind turbines
    Applied Energy, 2017
    Co-Authors: Xiong Liu, Ajit R Godbole, Yan Chen
    Abstract:

    Aerodynamic damping has an important effect on the dynamic response of offshore Horizontal Axis Wind Turbines (HAWTs). In this paper, an analysis of the loads on offshore HAWTs is presented. The analysis combines the Aerodynamics, hydrodynamics and structural dynamics of the structure, and includes the effects of aerodynamic damping. The aim is to better understand the role of aerodynamic damping during the interaction of wind and wave and the structure, and to quantitatively evaluate the effects of aerodynamic damping on the lifetime fatigue load on offshore HAWT towers. The aerodynamic loads are estimated using the Blade Element-Momentum (BEM) theory, including the effects of dynamic inflow and dynamic stall. The wave dynamics is estimated assuming ‘random sea state’ described by the JONSWAP spectrum, with wave loads calculated using Morison’s equation and water kinematics modelled using linear wave theory. Two aerodynamic damping models are proposed: (1) a model based on the analysis of the rotor Aerodynamics incorporating the tower-top motion of a constant-speed wind turbine, which is then modified for variable-speed wind turbines by introducing a correction factor; and (2) a model based on Salzmann and van der Tempel’s method (Salzmann and van der Tempel, 2005) to calculate the aerodynamic damping as the increase in the thrust per unit increase in the wind speed. The models are incorporated into a transient load analysis. The effects of aerodynamic damping on the lifetime fatigue loads of the tower are then investigated through load analysis of a 5MW offshore HAWT. In addition, the influence of different aerodynamic damping calculation methods on the prediction of fatigue loads is studied.

Nudds, Robert L. - One of the best experts on this subject based on the ideXlab platform.

  • The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces
    2016
    Co-Authors: Lees, John J., Dimitriadis Grigorios, Nudds, Robert L.
    Abstract:

    The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the Aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing 3 distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids). The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes), which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is Aerodynamics during flapping and not gliding that is likely to be the primary driver.Peer reviewe

  • The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces
    'PeerJ', 2016
    Co-Authors: Lees, John J., Dimitriadis Grigorios, Nudds, Robert L.
    Abstract:

    peer reviewedaudience: researcher, professional, studentThe diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the Aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing 3 distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids). The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes), which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is Aerodynamics during flapping and not gliding that is likely to be the primary driver

Robert L. Nudds - One of the best experts on this subject based on the ideXlab platform.

  • The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces
    PeerJ, 2016
    Co-Authors: John J. Lees, Georgios Dimitriadis, Robert L. Nudds
    Abstract:

    The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the Aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing three distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids). The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes), which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is Aerodynamics during flapping and not gliding that is likely to be the primary driver.

Lees, John J. - One of the best experts on this subject based on the ideXlab platform.

  • The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces
    2016
    Co-Authors: Lees, John J., Dimitriadis Grigorios, Nudds, Robert L.
    Abstract:

    The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the Aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing 3 distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids). The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes), which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is Aerodynamics during flapping and not gliding that is likely to be the primary driver.Peer reviewe

  • The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces
    'PeerJ', 2016
    Co-Authors: Lees, John J., Dimitriadis Grigorios, Nudds, Robert L.
    Abstract:

    peer reviewedaudience: researcher, professional, studentThe diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the Aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing 3 distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids). The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes), which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is Aerodynamics during flapping and not gliding that is likely to be the primary driver