Alkane 1 Monooxygenase - Explore the Science & Experts | ideXlab

Scan Science and Technology

Contact Leading Edge Experts & Companies

Alkane 1 Monooxygenase

The Experts below are selected from a list of 744 Experts worldwide ranked by ideXlab platform

Alkane 1 Monooxygenase – Free Register to Access Experts & Abstracts

Corina P. D. Brussaard – One of the best experts on this subject based on the ideXlab platform.

  • substrates specialization in lipid compounds and hydrocarbons of marinobacter genus
    Environmental Science and Pollution Research, 2015
    Co-Authors: Patricia Bonin, Christophe Vieira, Régis Grimaud, Cecile Militon, Philippe Cuny, Oscar Lima, Sophie Guasco, Corina P. D. Brussaard

    Abstract:

    The impact of petroleum contamination and of burrowing macrofauna on abundances of Marinobacter and denitrifiers was tested in marine sediment mesocoms after 3 months incubation. Quantification of this genus by qPCR with a new primer set showed that the main factor favoring Marinobacter abundance was hydrocarbon amendment followed by macrofauna presence. In parallel, proportion of nosZ-harboring bacteria increased in the presence of marcrofauna. Quantitative finding were explained by physiological data from a set of 34 strains and by genomic analysis of 16 genomes spanning 15 different Marinobacter-validated species (Marinobacter hydrocarbonoclasticus, Marinobacter daeopensis, Marinobacter santoriniensis, Marinobacter pelagius, Marinobacter flavimaris, Marinobacter adhaerens, Marinobacter xestospongiae, Marinobacter algicola, Marinobacter vinifirmus, Marinobacter maritimus, Marinobacter psychrophilus, Marinobacter lipoliticus, Marinobacter manganoxydans, Marinobacter excellens, Marinobacter nanhaiticus) and 4 potential novel ones. Among the 105 organic electron donors tested in physiological analysis, Marinobacter pattern appeared narrow for almost all kinds of organic compounds except lipid ones. Strains of this set could oxidize a very large spectrum of lipids belonging to glycerolipids, branched, fatty acyls, and aromatic hydrocarbon classes. Physiological data were comforted by genomic analysis, and genes of Alkane 1Monooxygenase, haloAlkane dehalogenase, and flavin-binding Monooxygenase were detected in most genomes. Denitrification was assessed for several strains belonging to M. hydrocarbonoclasticus, M. vinifirmus, Marinobacter maritinus, and M. pelagius species indicating the possibility to use nitrate as alternative electron acceptor. Higher occurrence of Marinobacter in the presence of petroleum appeared to be the result of a broader physiological trait allowing this genus to use lipids including hydrocarbon as principal electron donors.

Gábor Rákhely – One of the best experts on this subject based on the ideXlab platform.

  • Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons
    Applied Microbiology and Biotechnology, 2015
    Co-Authors: Krisztián Laczi, Ágnes Kis, Balázs Horváth, Gergely Maróti, Botond Hegedüs, Katalin Perei, Gábor Rákhely

    Abstract:

    Rhodococcus erythropolis PR4 is able to degrade diesel oil, normal-, iso- and cycloparaffins and aromatic compounds. The complete DNA content of the strain was previously sequenced and numerous oxygenase genes were identified. In order to identify the key elements participating in biodegradation of various hydrocarbons, we performed a comparative whole transcriptome analysis of cells grown on hexadecane, diesel oil and acetate. The transcriptomic data for the most prominent genes were validated by RT-qPCR. The expression of two genes coding for Alkane1Monooxygenase enzymes was highly upregulated in the presence of hydrocarbon substrates. The transcription of eight phylogenetically diverse cytochrome P450 ( cyp ) genes was upregulated in the presence of diesel oil. The transcript levels of various oxygenase genes were determined in cells grown in an artificial mixture, containing hexadecane, cycloparaffin and aromatic compounds and six cyp genes were induced by this hydrocarbon mixture. Five of them were not upregulated by linear and branched hydrocarbons. The expression of fatty acid synthase I genes was downregulated by hydrocarbon substrates, indicating the utilization of external Alkanes for fatty acid synthesis. Moreover, the transcription of genes involved in siderophore synthesis, iron transport and exopolysaccharide biosynthesis was also upregulated, indicating their important role in hydrocarbon metabolism. Based on the results, complex metabolic response profiles were established for cells grown on various hydrocarbons. Our results represent a functional annotation of a rhodococcal genome, provide deeper insight into molecular events in diesel/hydrocarbon utilization and suggest novel target genes for environmental monitoring projects.

Christophe Vieira – One of the best experts on this subject based on the ideXlab platform.

  • substrates specialization in lipid compounds and hydrocarbons of marinobacter genus
    Environmental Science and Pollution Research, 2015
    Co-Authors: Patricia Bonin, Christophe Vieira, Régis Grimaud, Cecile Militon, Philippe Cuny, Oscar Lima, Sophie Guasco, Corina P. D. Brussaard

    Abstract:

    The impact of petroleum contamination and of burrowing macrofauna on abundances of Marinobacter and denitrifiers was tested in marine sediment mesocoms after 3 months incubation. Quantification of this genus by qPCR with a new primer set showed that the main factor favoring Marinobacter abundance was hydrocarbon amendment followed by macrofauna presence. In parallel, proportion of nosZ-harboring bacteria increased in the presence of marcrofauna. Quantitative finding were explained by physiological data from a set of 34 strains and by genomic analysis of 16 genomes spanning 15 different Marinobacter-validated species (Marinobacter hydrocarbonoclasticus, Marinobacter daeopensis, Marinobacter santoriniensis, Marinobacter pelagius, Marinobacter flavimaris, Marinobacter adhaerens, Marinobacter xestospongiae, Marinobacter algicola, Marinobacter vinifirmus, Marinobacter maritimus, Marinobacter psychrophilus, Marinobacter lipoliticus, Marinobacter manganoxydans, Marinobacter excellens, Marinobacter nanhaiticus) and 4 potential novel ones. Among the 105 organic electron donors tested in physiological analysis, Marinobacter pattern appeared narrow for almost all kinds of organic compounds except lipid ones. Strains of this set could oxidize a very large spectrum of lipids belonging to glycerolipids, branched, fatty acyls, and aromatic hydrocarbon classes. Physiological data were comforted by genomic analysis, and genes of Alkane 1Monooxygenase, haloAlkane dehalogenase, and flavin-binding Monooxygenase were detected in most genomes. Denitrification was assessed for several strains belonging to M. hydrocarbonoclasticus, M. vinifirmus, Marinobacter maritinus, and M. pelagius species indicating the possibility to use nitrate as alternative electron acceptor. Higher occurrence of Marinobacter in the presence of petroleum appeared to be the result of a broader physiological trait allowing this genus to use lipids including hydrocarbon as principal electron donors.