Allopatric Speciation

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 6654 Experts worldwide ranked by ideXlab platform

Elvira Hörandl - One of the best experts on this subject based on the ideXlab platform.

  • Phylogenomics unravels Quaternary vicariance and Allopatric Speciation patterns in temperate‐montane plant species: a case study on the Ranunculus auricomus species complex
    Molecular Ecology, 2020
    Co-Authors: Salvatore Tomasello, Kevin Karbstein, Ladislav Hodač, Claudia Paetzold, Elvira Hörandl
    Abstract:

    The time frame and geographical patterns of diversification processes in European temperate-montane herbs are still not well understood. We used the sexual species of the Ranunculus auricomus complex as a model system to understand how vicariance versus dispersal processes in the context of Pleistocene climatic fluctuations have triggered Speciation in temperate-montane plant species. We used target enrichment sequence data from about 600 nuclear genes and coalescent-based species tree inference methods to resolve phylogenetic relationships among the sexual taxa of the complex. We estimated absolute divergence times and, using ancestral range reconstruction, we tested if Speciation was enhanced by vicariance or by dispersal processes. Phylogenetic relationships among taxa were fully resolved with some incongruence in the position of the tetraploid R. marsicus. Speciation events took place in a very short time at the end of the Mid-Pleistocene Transition (830-580 thousand years ago [ka]). A second wave of intraspecific geographical differentiation occurred at the end of the Riss glaciation or during the Eemian interglacial between 200 and 100 ka. Ancestral range reconstruction suggests a widespread European ancestor of the R. auricomus complex. Vicariance has triggered Allopatric Speciation in temperate-montane plant species during the climatic deterioration that occurred during the last phase of the Mid-Pleistocene Transition. Vegetation restructuring from forest into tundra could have confined these forest species into isolated glacial macro- and microrefugia. During subsequent warming periods, range expansions of these species could have been hampered by apomictic derivatives and by other congeneric competitors in the same habitat.

  • phylogenomics unravels quaternary vicariance and Allopatric Speciation patterns in temperate montane plant species a case study on the ranunculus auricomus species complex
    Molecular Ecology, 2020
    Co-Authors: Salvatore Tomasello, Kevin Karbstein, Ladislav Hodač, Claudia Paetzold, Elvira Hörandl
    Abstract:

    The time frame and geographical patterns of diversification processes in European temperate-montane herbs are still not well understood. We used the sexual species of the Ranunculus auricomus complex as a model system to understand how vicariance versus dispersal processes in the context of Pleistocene climatic fluctuations have triggered Speciation in temperate-montane plant species. We used target enrichment sequence data from about 600 nuclear genes and coalescent-based species tree inference methods to resolve phylogenetic relationships among the sexual taxa of the complex. We estimated absolute divergence times and, using ancestral range reconstruction, we tested if Speciation was enhanced by vicariance or by dispersal processes. Phylogenetic relationships among taxa were fully resolved with some incongruence in the position of the tetraploid R. marsicus. Speciation events took place in a very short time at the end of the Mid-Pleistocene Transition (830-580 thousand years ago [ka]). A second wave of intraspecific geographical differentiation occurred at the end of the Riss glaciation or during the Eemian interglacial between 200 and 100 ka. Ancestral range reconstruction suggests a widespread European ancestor of the R. auricomus complex. Vicariance has triggered Allopatric Speciation in temperate-montane plant species during the climatic deterioration that occurred during the last phase of the Mid-Pleistocene Transition. Vegetation restructuring from forest into tundra could have confined these forest species into isolated glacial macro- and microrefugia. During subsequent warming periods, range expansions of these species could have been hampered by apomictic derivatives and by other congeneric competitors in the same habitat.

Salvatore Tomasello - One of the best experts on this subject based on the ideXlab platform.

  • Phylogenomics unravels Quaternary vicariance and Allopatric Speciation patterns in temperate‐montane plant species: a case study on the Ranunculus auricomus species complex
    Molecular Ecology, 2020
    Co-Authors: Salvatore Tomasello, Kevin Karbstein, Ladislav Hodač, Claudia Paetzold, Elvira Hörandl
    Abstract:

    The time frame and geographical patterns of diversification processes in European temperate-montane herbs are still not well understood. We used the sexual species of the Ranunculus auricomus complex as a model system to understand how vicariance versus dispersal processes in the context of Pleistocene climatic fluctuations have triggered Speciation in temperate-montane plant species. We used target enrichment sequence data from about 600 nuclear genes and coalescent-based species tree inference methods to resolve phylogenetic relationships among the sexual taxa of the complex. We estimated absolute divergence times and, using ancestral range reconstruction, we tested if Speciation was enhanced by vicariance or by dispersal processes. Phylogenetic relationships among taxa were fully resolved with some incongruence in the position of the tetraploid R. marsicus. Speciation events took place in a very short time at the end of the Mid-Pleistocene Transition (830-580 thousand years ago [ka]). A second wave of intraspecific geographical differentiation occurred at the end of the Riss glaciation or during the Eemian interglacial between 200 and 100 ka. Ancestral range reconstruction suggests a widespread European ancestor of the R. auricomus complex. Vicariance has triggered Allopatric Speciation in temperate-montane plant species during the climatic deterioration that occurred during the last phase of the Mid-Pleistocene Transition. Vegetation restructuring from forest into tundra could have confined these forest species into isolated glacial macro- and microrefugia. During subsequent warming periods, range expansions of these species could have been hampered by apomictic derivatives and by other congeneric competitors in the same habitat.

  • phylogenomics unravels quaternary vicariance and Allopatric Speciation patterns in temperate montane plant species a case study on the ranunculus auricomus species complex
    Molecular Ecology, 2020
    Co-Authors: Salvatore Tomasello, Kevin Karbstein, Ladislav Hodač, Claudia Paetzold, Elvira Hörandl
    Abstract:

    The time frame and geographical patterns of diversification processes in European temperate-montane herbs are still not well understood. We used the sexual species of the Ranunculus auricomus complex as a model system to understand how vicariance versus dispersal processes in the context of Pleistocene climatic fluctuations have triggered Speciation in temperate-montane plant species. We used target enrichment sequence data from about 600 nuclear genes and coalescent-based species tree inference methods to resolve phylogenetic relationships among the sexual taxa of the complex. We estimated absolute divergence times and, using ancestral range reconstruction, we tested if Speciation was enhanced by vicariance or by dispersal processes. Phylogenetic relationships among taxa were fully resolved with some incongruence in the position of the tetraploid R. marsicus. Speciation events took place in a very short time at the end of the Mid-Pleistocene Transition (830-580 thousand years ago [ka]). A second wave of intraspecific geographical differentiation occurred at the end of the Riss glaciation or during the Eemian interglacial between 200 and 100 ka. Ancestral range reconstruction suggests a widespread European ancestor of the R. auricomus complex. Vicariance has triggered Allopatric Speciation in temperate-montane plant species during the climatic deterioration that occurred during the last phase of the Mid-Pleistocene Transition. Vegetation restructuring from forest into tundra could have confined these forest species into isolated glacial macro- and microrefugia. During subsequent warming periods, range expansions of these species could have been hampered by apomictic derivatives and by other congeneric competitors in the same habitat.

Claudia Paetzold - One of the best experts on this subject based on the ideXlab platform.

  • Phylogenomics unravels Quaternary vicariance and Allopatric Speciation patterns in temperate‐montane plant species: a case study on the Ranunculus auricomus species complex
    Molecular Ecology, 2020
    Co-Authors: Salvatore Tomasello, Kevin Karbstein, Ladislav Hodač, Claudia Paetzold, Elvira Hörandl
    Abstract:

    The time frame and geographical patterns of diversification processes in European temperate-montane herbs are still not well understood. We used the sexual species of the Ranunculus auricomus complex as a model system to understand how vicariance versus dispersal processes in the context of Pleistocene climatic fluctuations have triggered Speciation in temperate-montane plant species. We used target enrichment sequence data from about 600 nuclear genes and coalescent-based species tree inference methods to resolve phylogenetic relationships among the sexual taxa of the complex. We estimated absolute divergence times and, using ancestral range reconstruction, we tested if Speciation was enhanced by vicariance or by dispersal processes. Phylogenetic relationships among taxa were fully resolved with some incongruence in the position of the tetraploid R. marsicus. Speciation events took place in a very short time at the end of the Mid-Pleistocene Transition (830-580 thousand years ago [ka]). A second wave of intraspecific geographical differentiation occurred at the end of the Riss glaciation or during the Eemian interglacial between 200 and 100 ka. Ancestral range reconstruction suggests a widespread European ancestor of the R. auricomus complex. Vicariance has triggered Allopatric Speciation in temperate-montane plant species during the climatic deterioration that occurred during the last phase of the Mid-Pleistocene Transition. Vegetation restructuring from forest into tundra could have confined these forest species into isolated glacial macro- and microrefugia. During subsequent warming periods, range expansions of these species could have been hampered by apomictic derivatives and by other congeneric competitors in the same habitat.

  • phylogenomics unravels quaternary vicariance and Allopatric Speciation patterns in temperate montane plant species a case study on the ranunculus auricomus species complex
    Molecular Ecology, 2020
    Co-Authors: Salvatore Tomasello, Kevin Karbstein, Ladislav Hodač, Claudia Paetzold, Elvira Hörandl
    Abstract:

    The time frame and geographical patterns of diversification processes in European temperate-montane herbs are still not well understood. We used the sexual species of the Ranunculus auricomus complex as a model system to understand how vicariance versus dispersal processes in the context of Pleistocene climatic fluctuations have triggered Speciation in temperate-montane plant species. We used target enrichment sequence data from about 600 nuclear genes and coalescent-based species tree inference methods to resolve phylogenetic relationships among the sexual taxa of the complex. We estimated absolute divergence times and, using ancestral range reconstruction, we tested if Speciation was enhanced by vicariance or by dispersal processes. Phylogenetic relationships among taxa were fully resolved with some incongruence in the position of the tetraploid R. marsicus. Speciation events took place in a very short time at the end of the Mid-Pleistocene Transition (830-580 thousand years ago [ka]). A second wave of intraspecific geographical differentiation occurred at the end of the Riss glaciation or during the Eemian interglacial between 200 and 100 ka. Ancestral range reconstruction suggests a widespread European ancestor of the R. auricomus complex. Vicariance has triggered Allopatric Speciation in temperate-montane plant species during the climatic deterioration that occurred during the last phase of the Mid-Pleistocene Transition. Vegetation restructuring from forest into tundra could have confined these forest species into isolated glacial macro- and microrefugia. During subsequent warming periods, range expansions of these species could have been hampered by apomictic derivatives and by other congeneric competitors in the same habitat.

Ladislav Hodač - One of the best experts on this subject based on the ideXlab platform.

  • Phylogenomics unravels Quaternary vicariance and Allopatric Speciation patterns in temperate‐montane plant species: a case study on the Ranunculus auricomus species complex
    Molecular Ecology, 2020
    Co-Authors: Salvatore Tomasello, Kevin Karbstein, Ladislav Hodač, Claudia Paetzold, Elvira Hörandl
    Abstract:

    The time frame and geographical patterns of diversification processes in European temperate-montane herbs are still not well understood. We used the sexual species of the Ranunculus auricomus complex as a model system to understand how vicariance versus dispersal processes in the context of Pleistocene climatic fluctuations have triggered Speciation in temperate-montane plant species. We used target enrichment sequence data from about 600 nuclear genes and coalescent-based species tree inference methods to resolve phylogenetic relationships among the sexual taxa of the complex. We estimated absolute divergence times and, using ancestral range reconstruction, we tested if Speciation was enhanced by vicariance or by dispersal processes. Phylogenetic relationships among taxa were fully resolved with some incongruence in the position of the tetraploid R. marsicus. Speciation events took place in a very short time at the end of the Mid-Pleistocene Transition (830-580 thousand years ago [ka]). A second wave of intraspecific geographical differentiation occurred at the end of the Riss glaciation or during the Eemian interglacial between 200 and 100 ka. Ancestral range reconstruction suggests a widespread European ancestor of the R. auricomus complex. Vicariance has triggered Allopatric Speciation in temperate-montane plant species during the climatic deterioration that occurred during the last phase of the Mid-Pleistocene Transition. Vegetation restructuring from forest into tundra could have confined these forest species into isolated glacial macro- and microrefugia. During subsequent warming periods, range expansions of these species could have been hampered by apomictic derivatives and by other congeneric competitors in the same habitat.

  • phylogenomics unravels quaternary vicariance and Allopatric Speciation patterns in temperate montane plant species a case study on the ranunculus auricomus species complex
    Molecular Ecology, 2020
    Co-Authors: Salvatore Tomasello, Kevin Karbstein, Ladislav Hodač, Claudia Paetzold, Elvira Hörandl
    Abstract:

    The time frame and geographical patterns of diversification processes in European temperate-montane herbs are still not well understood. We used the sexual species of the Ranunculus auricomus complex as a model system to understand how vicariance versus dispersal processes in the context of Pleistocene climatic fluctuations have triggered Speciation in temperate-montane plant species. We used target enrichment sequence data from about 600 nuclear genes and coalescent-based species tree inference methods to resolve phylogenetic relationships among the sexual taxa of the complex. We estimated absolute divergence times and, using ancestral range reconstruction, we tested if Speciation was enhanced by vicariance or by dispersal processes. Phylogenetic relationships among taxa were fully resolved with some incongruence in the position of the tetraploid R. marsicus. Speciation events took place in a very short time at the end of the Mid-Pleistocene Transition (830-580 thousand years ago [ka]). A second wave of intraspecific geographical differentiation occurred at the end of the Riss glaciation or during the Eemian interglacial between 200 and 100 ka. Ancestral range reconstruction suggests a widespread European ancestor of the R. auricomus complex. Vicariance has triggered Allopatric Speciation in temperate-montane plant species during the climatic deterioration that occurred during the last phase of the Mid-Pleistocene Transition. Vegetation restructuring from forest into tundra could have confined these forest species into isolated glacial macro- and microrefugia. During subsequent warming periods, range expansions of these species could have been hampered by apomictic derivatives and by other congeneric competitors in the same habitat.

Kevin Karbstein - One of the best experts on this subject based on the ideXlab platform.

  • Phylogenomics unravels Quaternary vicariance and Allopatric Speciation patterns in temperate‐montane plant species: a case study on the Ranunculus auricomus species complex
    Molecular Ecology, 2020
    Co-Authors: Salvatore Tomasello, Kevin Karbstein, Ladislav Hodač, Claudia Paetzold, Elvira Hörandl
    Abstract:

    The time frame and geographical patterns of diversification processes in European temperate-montane herbs are still not well understood. We used the sexual species of the Ranunculus auricomus complex as a model system to understand how vicariance versus dispersal processes in the context of Pleistocene climatic fluctuations have triggered Speciation in temperate-montane plant species. We used target enrichment sequence data from about 600 nuclear genes and coalescent-based species tree inference methods to resolve phylogenetic relationships among the sexual taxa of the complex. We estimated absolute divergence times and, using ancestral range reconstruction, we tested if Speciation was enhanced by vicariance or by dispersal processes. Phylogenetic relationships among taxa were fully resolved with some incongruence in the position of the tetraploid R. marsicus. Speciation events took place in a very short time at the end of the Mid-Pleistocene Transition (830-580 thousand years ago [ka]). A second wave of intraspecific geographical differentiation occurred at the end of the Riss glaciation or during the Eemian interglacial between 200 and 100 ka. Ancestral range reconstruction suggests a widespread European ancestor of the R. auricomus complex. Vicariance has triggered Allopatric Speciation in temperate-montane plant species during the climatic deterioration that occurred during the last phase of the Mid-Pleistocene Transition. Vegetation restructuring from forest into tundra could have confined these forest species into isolated glacial macro- and microrefugia. During subsequent warming periods, range expansions of these species could have been hampered by apomictic derivatives and by other congeneric competitors in the same habitat.

  • phylogenomics unravels quaternary vicariance and Allopatric Speciation patterns in temperate montane plant species a case study on the ranunculus auricomus species complex
    Molecular Ecology, 2020
    Co-Authors: Salvatore Tomasello, Kevin Karbstein, Ladislav Hodač, Claudia Paetzold, Elvira Hörandl
    Abstract:

    The time frame and geographical patterns of diversification processes in European temperate-montane herbs are still not well understood. We used the sexual species of the Ranunculus auricomus complex as a model system to understand how vicariance versus dispersal processes in the context of Pleistocene climatic fluctuations have triggered Speciation in temperate-montane plant species. We used target enrichment sequence data from about 600 nuclear genes and coalescent-based species tree inference methods to resolve phylogenetic relationships among the sexual taxa of the complex. We estimated absolute divergence times and, using ancestral range reconstruction, we tested if Speciation was enhanced by vicariance or by dispersal processes. Phylogenetic relationships among taxa were fully resolved with some incongruence in the position of the tetraploid R. marsicus. Speciation events took place in a very short time at the end of the Mid-Pleistocene Transition (830-580 thousand years ago [ka]). A second wave of intraspecific geographical differentiation occurred at the end of the Riss glaciation or during the Eemian interglacial between 200 and 100 ka. Ancestral range reconstruction suggests a widespread European ancestor of the R. auricomus complex. Vicariance has triggered Allopatric Speciation in temperate-montane plant species during the climatic deterioration that occurred during the last phase of the Mid-Pleistocene Transition. Vegetation restructuring from forest into tundra could have confined these forest species into isolated glacial macro- and microrefugia. During subsequent warming periods, range expansions of these species could have been hampered by apomictic derivatives and by other congeneric competitors in the same habitat.