The Experts below are selected from a list of 204 Experts worldwide ranked by ideXlab platform
Robert Hierner - One of the best experts on this subject based on the ideXlab platform.
-
Freie funktionelle Transplantation des Musculus gracilis zur Wiederherstellung der Ellbogenbeugung bei posttraumatischen Armplexusschäden
Operative Orthopadie Und Traumatologie, 2020Co-Authors: A. Berger, Robert HiernerAbstract:ObjectiveReconstruction of powerful active elbow flexion. Reconstruction of missing muscle unit by neurovascular pedicled functional muscle transplantation.IndicationsTreatment of last choice for - secondary reconstruction of active elbow flexion in case of□ complete lesion of the brachial plexus or musculocutaneous nerve (M0 muscle function = replacement indication),□ partial but incomplete lesion of the brachial plexus or musculocutaneous nerve (M1- 3 muscle function = augmentation indication);- replacement of the elbow flexor muscles in case of primary muscle loss (tumor, trauma).ContraindicationsConcomitant lesions of the axillary artery. No adequate donor nerve.Relative: no sensibility at all at the foreArm and hand.Surgical TechniqueFree functional biarticular myocutaneous transplantation of gracilis muscle. A myocutaneous gracilis flap is raised at the thigh. At the upper Arm the flap is fixed proximally to the coracoid process or the lateral clavicle. The distal insertion is sutured to the distal biceps tendon. Vascular anastomoses are carried out in end-to-side fashion with the brachial artery and vein. Nerval coaptation is done in end-to-end technique using the muculocutaneous nerve.Postoperative ManagementComplete immobilization for 6 weeks.Dorsal upper Arm Splint until sufficient muscle power (M 4 ). Progressive increase of active range of motion for another 6 weeks. Continuation of physiotherapy for 12-18 months. Postoperative standardized compression therapy, combined with scar therapy (silicone sheet).ResultsFunctionally useful results can be expected in 60-75% of patients, especially if there is some residual function (M1 or M2) left (“augmentation indication”). Early free functional muscle transplantation shows best results in patients with direct muscle defect, because all vascular and neuronal structures are still available, and no secondary changes such as fibrosis or joint stiffness are present yet. There are inconsistent results for patients with neurologic insufficiency (i.e., total brachial plexus palsy) or mixed neuromuscular insufficiency, such as compartment syndrome. Especially in complete brachial plexus lesion, free functional muscle transfer is often the only treatment option. Provided there is a good patient selection, satisfactory results can be achieved for elbow flexion. Whether a higher number of axons, as provided by the contralateral C7 transfer, will lead to better results is the topic of an ongoing study.
-
Freie funktionelle Transplantation des Musculus gracilis zur Wiederherstellung der Ellbogenbeugung bei posttraumatischen Armplexusschäden
Operative Orthopädie und Traumatologie, 2009Co-Authors: A. Berger, Robert HiernerAbstract:Operationsziel Wiederherstellung der aktiven Ellbogenfunktion als Grundvoraussetzung für die bimanuelle Tätigkeit durch Ersatz einer fehlenden funktionellen Muskeleinheit durch eine freie funktionelle Muskeltransplantation. Indikationen Der Eingriff stellt eine Therapie der letzten Wahl dar. Ersatzindikation: Komplette Läsionen des Plexus brachialis oder des Nervus musculocutaneus (M0). Augmentationsindikation: Partielle, aber ungenügende Regeneration des Plexus brachialis oder des Nervus musculocutaneus (M1–_3). Ersatz der Ellbogenbeuger bei primärem Muskelverlust durch Trauma oder Tumor als „Effektorganersatz“. Kontraindikationen Gefäßläsionen der Arteria axillaris. Ungenügende Möglichkeit der Neurotisation durch inadäquaten Spendernerv. Relativ: Asensibilität im UnterArm- und Handbereich. Operationstechnik Freie funktionelle biartikuläre myokutane Musculus-gracilis-Transplantation. Der Musculus gracilis wird mit einem darüberliegenden Hautanteil am Oberschenkel an seinem Gefäß-Nerven-Stiel freipräpariert und am OberArm als Ersatz für den Musculus biceps verwendet. Proximal wird das Transplantat am Processus coracoideus oder an der lateralen Klavikula befestigt, distal an der distalen Bizepssehne. Die Gefäße werden in End-zu-Seit-Technik an die Vasa brachialia angeschlossen. Der Nerv wird mit dem Stumpf des Nervus musculocutaneus koaptiert. Weiterbehandlung Vollständige Immobilisation für 6 Wochen. Anlage einer dorsalen OberArmschiene in 90° Beugung im Ellbogengelenk bis zur ausreichenden Muskelfunktion (12–18 Monate). Nach 6 Wochen intensive Physiotherapie zur Erhaltung der passiven Beweglichkeit. Bei Einsetzen der Muskelkontraktion nach 6–9 Monaten Biofeedbacktraining. Progressiver passiver Bewegungsaufbau („Üben aus der Schiene“) bis zur ausreichenden Muskelkontraktion (M_4). Fortführung der physiotherapeutischen Begleittherapie für 12–18 Monate. Postoperative standardisierte Kompressionstherapie, evtl. kombiniert mit Narbentherapie (Silikonplatte). Ergebnisse Funktionell wertvolle Ergebnisse bei 60–75% der Patienten, vor allem bei ungenügender Restfunktion der regenerierten Ellbogenbeuger („Augmentationsindikation“). Die frühzeitige freie funktionelle Muskeltransplantation bei isolierter muskulärer (myogener) Insuffizienz zeigt im Allgemeinen die besten Resultate, da eine ausreichende autochthone Gefäß-Nerven-Versorgung vorliegt und meist keine sekundären Veränderungen wie Gelenksteifen oder Fibrosen bestehen. Die funktionellen Ergebnisse nach freier funktioneller Muskeltransplantation bei kompletter Läsion des Plexus brachialis (neurogene Insuffizienz) und Folgezustand nach Kompartmentsyndrom (gemischte neuromuskuläre Insuffizienz) zeigen eine große Streubreite. Die freie funktionelle Muskeltransplantation stellt oft die einzige noch mögliche Therapie dar. Bei guter Patientenauswahl kann vor allem im Ellbogenbereich mit hoher Wahrscheinlichkeit eine funktionelle Bewegung erreicht werden. Objective Reconstruction of powerful active elbow flexion. Reconstruction of missing muscle unit by neurovascular pedicled functional muscle transplantation. Indications Treatment of last choice for – secondary reconstruction of active elbow flexion in case of □ complete lesion of the brachial plexus or musculocutaneous nerve (M0 muscle function = replacement indication), □ partial but incomplete lesion of the brachial plexus or musculocutaneous nerve (M1–_3 muscle function = augmentation indication); – replacement of the elbow flexor muscles in case of primary muscle loss (tumor, trauma). Contraindications Concomitant lesions of the axillary artery. No adequate donor nerve. Relative: no sensibility at all at the foreArm and hand. Surgical Technique Free functional biarticular myocutaneous transplantation of gracilis muscle. A myocutaneous gracilis flap is raised at the thigh. At the upper Arm the flap is fixed proximally to the coracoid process or the lateral clavicle. The distal insertion is sutured to the distal biceps tendon. Vascular anastomoses are carried out in end-to-side fashion with the brachial artery and vein. Nerval coaptation is done in end-to-end technique using the muculocutaneous nerve. Postoperative Management Complete immobilization for 6 weeks. Dorsal upper Arm Splint until sufficient muscle power (M_4). Progressive increase of active range of motion for another 6 weeks. Continuation of physiotherapy for 12–18 months. Postoperative standardized compression therapy, combined with scar therapy (silicone sheet). Results Functionally useful results can be expected in 60–75% of patients, especially if there is some residual function (M1 or M2) left (“augmentation indication”). Early free functional muscle transplantation shows best results in patients with direct muscle defect, because all vascular and neuronal structures are still available, and no secondary changes such as fibrosis or joint stiffness are present yet. There are inconsistent results for patients with neurologic insufficiency (i.e., total brachial plexus palsy) or mixed neuromuscular insufficiency, such as compartment syndrome. Especially in complete brachial plexus lesion, free functional muscle transfer is often the only treatment option. Provided there is a good patient selection, satisfactory results can be achieved for elbow flexion. Whether a higher number of axons, as provided by the contralateral C7 transfer, will lead to better results is the topic of an ongoing study.
-
Verpflanzung des Musculus pectoralis major zur Wiederherstellung der Ellbogenbeugung bei posttraumatischen Armplexusschäden
Operative Orthopädie und Traumatologie, 2009Co-Authors: Robert Hierner, A. BergerAbstract:Objective Active elbow flexion is necessary for bimanual tasks. Reconstruction of powerful active elbow flexion. Reconstruction of missing muscle unit by neurovascular pedicled functional muscle transposition. Indications Treatment of second choice (first choice bipolar latissimus dorsi transfer according to Zancolli & Mitre, transfer of the flexor/pronator muscle onto the distal humerus, or transposition of the triceps onto the biceps): – (Secondary) reconstruction of active elbow flexion in case of lesion of the brachial plexus or musculocutaneous nerve. – Replacement of the elbow flexor muscles in case of primary muscle loss (tumor, trauma). Contraindications Ongoing spontaneous or postoperative nerve regeneration. Ankylosis of the elbow joint (in case of good shoulder and hand function, one should consider arthrolysis or even total joint replacement). Insufficient power of the pectoralis major muscle (< M_4). Lesion of the axillary artery involving the thoracoacromial artery. Relative: concomitant lesion of the latissimus dorsi and teres major muscles (loss of glenohumeral adduction [thoracohumeral pinch]. Surgical Technique Distal muscle transposition: transposition of the origin – pars abdominalis, pars sternocostalis, pars clavicularis (unipolar or bipolar, partial or complete distal transfer): – Unipolar partial pectoralis major muscle transposition according to Clark. – Bipolar partial pectoralis major muscle transposition according to Schottstaedt et al. – Bipolar complete pectoralis major muscle transposition according to Dautry et al. and Carroll & Kleinmann, respectively, possibly in combination with transfer of the pectoralis minor muscle. – Myocutaneous flap in case of concomitant skin defect at the upper Arm level. Proximal tendon transfer: transposition of the tendinous insertion at the humerus of the pectoralis major muscle. Postoperative Management Immobilization for 6 weeks in a dorsal upper Arm Splint, a Gilchrist bandage or a thorax-Arm abduction orthesis with the elbow in 90° flexion and supination. Early passive motion depending on pain within the sector 90–140°. Progressive increase of active range of motion after 6 weeks. Protected exercise from “out of the Splint” with increasing elbow extension of 10° per week. It is important, that there is still an extension lag of 30–40° at 3 months after transfer, in order to protect the reinnervated muscle and avoid overstretching. Although complete elbow extension should be the aim after 1 year, most patients will keep an extension lag of 20–30°. Physiotherapy must continue for 12–18 months. Postoperative standardized compression therapy, combined with scar therapy (silicone sheet). Results Meta-analysis of the literature and personal results show functional (very good and good) results in 54–86% of patients. There are only few complications. Operationsziel Wiederherstellung der aktiven Ellbogenbeugung, Grundvoraussetzung für die bimanuelle Tätigkeit. Ersatz einer fehlenden funktionellen Muskeleinheit durch neurovaskulär gestielte funktionelle Muskeltransposition. Indikationen Therapie der zweiten Wahl (erste Wahl bipolare Transposition des Musculus latissimus dorsi nach Zancolli & Mitre, Proximalisierung der Flexor-/Pronatormuskeln auf den distalen Humerus/Steindler-Transfer oder Trizeps-auf-Bizeps-Transposition): – (Sekundäre) Wiederherstellung der aktiven Ellbogenbeugung bei Läsionen des Plexus brachialis oder Nervus musculocutaneus. – Ersatz des Ellbogenbeuger bei primärem Muskelverlust (Trauma, Tumor). Kontraindikationen Mögliche Besserung der Lähmung durch weitere Reinnervation, spontan oder nach neurochirurgischem Eingriff. Posttraumatisch oder arthrotisch eingesteiftes Ellbogengelenk (bei guter Schulter- und Handfunktion kann die Möglichkeit einer Arthrolyse oder sogar Gelenkprothese erwogen werden). Unzureichender Kraftgrad des Musculus pectoralis major (mindestens M_4 erforderlich). Läsionen der Arteria axillaris mit Einbeziehung der Arteria thoracoacromialis. Relativ: Gleichzeitige Schädigung der Musculi latissimus dorsi et teres major (fehlende Adduktion im Schulterbereich [thorakohumerale Zangenfunktion]). Operationstechnik Distale Muskeltransposition: Transposition des Ursprungs – Pars abdominalis, Pars sternocostalis, Pars clavicularis (unipolarer oder bipolarer, partieller oder kompletter distaler Transfer): – Unipolare partielle Transposition des Muculus pectoralis major nach Clark. – Bipolare partielle Transposition des Musculus pectoralis major nach Schottstaedt et al. – Bipolare komplette Transposition des Musculus pectoralis major nach Dautry et al. bzw. Carroll & Kleinmann, evtl. in Kombination mit dem Musculus pectoralis minor. – Muskel-Haut-Lappenplastik bei zusätzlichem Hautdefekt. Proximale Sehnentransposition: Transposition der Sehnen des Musculus pectoralis. Weiterbehandlung Immobilisation in dorsaler OberArmschiene, einem Gilchrist-Verband oder einer Thorax-Arm-Abduktionsorthese in 90° Flexionsstellung und Supination für 6 Wochen. Progressiver Bewegungsaufbau nach 6 Wochen: Die passive Ellbogenstreckung und aktive Ellbogenbeugung werden bis zum Erreichen des maximal möglichen Bewegungsausmaßes „aus der Schiene heraus“ geübt. Am Ende des 3. Monats sollte ein Reststreckdefizit von 30–40° nicht unterschritten werden (behutsamer Belastungsaufbau, vor allem bei reinnervierter Muskulatur). Obwohl die komplette Ellbogenstreckung das Therapieziel sein muss, kann diese nicht bei allen Patienten erreicht werden. Ein bleibendes Streckdefizit wird häufig für eine kräftigere Ellbogenbeugung in Kauf genommen. Fortführung der physiotherapeutischen Begleittherapie für 12–18 Monate. Postoperative standardisierte Kompressionstherapie, evtl. kombiniert mit Narbentherapie (Silikonauflage). Ergebnisse Der Vergleich der eigenen Ergebnisse bei sechs operierten Patienten mit denen in der Literatur zeigt, dass eine adäquate Ellbogenbeugung in Bezug auf Bewegungsausmaß (Ellbogenbeugung > 120°) und Kraftleistung (mindestens 1,5 kg fixiert am Handgelenk über den gesamten Bewegungsraum) in 54–86% zu erwarten ist. Darüber hinaus besteht nur eine geringe Komplikationsrate.
David Espen - One of the best experts on this subject based on the ideXlab platform.
-
Fixation of fractures of the distal radius using the "nail-plate"
Operative Orthopadie und Traumatologie, 2020Co-Authors: David EspenAbstract:Stable fixation of unstable distal radius fractures by means of a "nail-plate" with the distal plate section lying on the dorsal surface of the distal radius fragment, and the proximal nail section inside the diaphysis of the radius. Unstable extraarticular fractures of the distal radius AO types A2 and A3, which can be managed by closed or indirect reduction. Intraarticular fractures of the distal radius showing a nondisplaced articular component. Also indicated in patients with osteoporosis. Extraarticular distal radius fractures with a distal fragment too small for placement of the distal locking pegs and/or a comminution extending into the diaphyseal portion of the radius. Displaced intraarticular fractures of the distal radius. Nascent malunions of the distal radius. Closed reduction of the fracture, straight dorsal incision of 3-4 cm length centered over Lister's tubercle. The extensor pollicis longus tendon is released and retracted toward the radial side. Lister's tubercle is exposed subperiosteally and removed with a rongeur. This creates a flat surface for seating the head of the implant. Proximal dissection is carried out to expose the fracture site and the dorsal ridge on the proximal fragment. The medullary canal is opened with an awl. The radiocarpal joint line is located by inserting a needle. The silhouette of the head of the implant is drawn with a marker pen, with its distal edge resting 4-6 mm proximal to the joint line. This is done to carve a notch on the distal edge of the proximal fragment in line with the third extensor compartment with the purpose of receiving the neck of the device. The insertion jig is assembled to the implant. The implant is then introduced in a retrograde fashion, through the fracture site, into the proximal fragment and advanced with gentle rotational motion. The head of the device is seated flush on the distal fragment. Under fluoroscopic guidance, in an anatomic lateral view, the tract for the central peg is drilled and the peg is applied in the central hole. This peg fixes the palmar tilt. By use of the jig, the proximal unicortical holes are drilled, and the proximal locking screws, which fix the radial length, are applied. After removal of the insertion jig, the remaining distal pegs are applied. During drilling, the distal fragment must be pushed up against the implant to assure that the head is flush with its surface. After application, the extensor pollicis longus tendon will course proximal to the head of the implant in the subcutaneous position while the tendons of the second and fourth extensor compartments will travel on each side of the implant, thereby avoiding tendon impingement. Use of a palmar synthetic Splint for 10 days. Active range of motion of the fingers is allowed immediately after surgery. On the 11th postoperative day, a custom-formed short Arm Splint is provided and active wrist motion is started. Radiologic control 4 weeks postoperatively. In the time between April 2005 and October 2006, 32 distal radius fractures were treated at the author's institution using the "nail-plate". Two complications were observed: loosening of a locking screw, and rupture of the extensor pollicis longus tendon 4 months postoperatively. In a study of more than 200 cases, only few complications were reported: a wound hematoma in a dialysis patient, loss of fixation of an articular fracture that was poorly indicated, and hypertrophic scar formation. In one patient complaining of persistent discomfort at the implantation site, the implant was removed.
-
Die Versorgung distaler Radiusfrakturen mit der „Nagel-Platte“
Operative Orthopadie Und Traumatologie, 2009Co-Authors: David EspenAbstract:ObjectiveStable fixation of unstable distal radius fractures by means of a "nail-plate" with the distal plate section lying on the dorsal surface of the distal radius fragment, and the proximal nail section inside the diaphysis of the radius.IndicationsUnstable extraarticular fractures of the distal radius AO types A2 and A3, which can be managed by closed or indirect reduction.Intraarticular fractures of the distal radius showing a nondisplaced articular component.Also indicated in patients with osteoporosis.ContraindicationsExtraarticular distal radius fractures with a distal fragment too small for placement of the distal locking pegs and/or a comminution extending into the diaphyseal portion of the radius.Displaced intraarticular fractures of the distal radius.Nascent malunions of the distal radius.Surgical TechniqueClosed reduction of the fracture, straight dorsal incision of 3-4 cm length centered over Lister’s tubercle. The extensor pollicis longus tendon is released and retracted toward the radial side. Lister’s tubercle is exposed subperiosteally and removed with a rongeur. This creates a flat surface for seating the head of the implant. Proximal dissection is carried out to expose the fracture site and the dorsal ridge on the proximal fragment. The medullary canal is opened with an awl. The radiocarpal joint line is located by inserting a needle. The silhouette of the head of the implant is drawn with a marker pen, with its distal edge resting 4-6 mm proximal to the joint line. This is done to carve a notch on the distal edge of the proximal fragment in line with the third extensor compartment with the purpose of receiving the neck of the device. The insertion jig is assembled to the implant. The implant is then introduced in a retrograde fashion, through the fracture site, into the proximal fragment and advanced with gentle rotational motion. The head of the device is seated flush on the distal fragment. Under fluoroscopic guidance, in an anatomic lateral view, the tract for the central peg is drilled and the peg is applied in the central hole. This peg fixes the palmar tilt. By use of the jig, the proximal unicortical holes are drilled, and the proximal locking screws, which fix the radial length, are applied. After removal of the insertion jig, the remaining distal pegs are applied. During drilling, the distal fragment must be pushed up against the implant to assure that the head is flush with its surface. After application, the extensor pollicis longus tendon will course proximal to the head of the implant in the subcutaneous position while the tendons of the second and fourth extensor compartments will travel on each side of the implant, thereby avoiding tendon impingement.Postoperative ManagementUse of a palmar synthetic Splint for 10 days. Active range of motion of the fingers is allowed immediately after surgery. On the 11th postoperative day, a custom-formed short Arm Splint is provided and active wrist motion is started. Radiologic control 4 weeks postoperatively.ResultsIn the time between April 2005 and October 2006, 32 distal radius fractures were treated at the author’s institution using the "nail-plate". Two complications were observed: loosening of a locking screw, and rupture of the extensor pollicis longus tendon 4 months postoperatively. In a study of more than 200 cases, only few complications were reported: a wound hematoma in a dialysis patient, loss of fixation of an articular fracture that was poorly indicated, and hypertrophic scar formation. In one patient complaining of persistent discomfort at the implantation site, the implant was removed.
-
Die Versorgung distaler Radiusfrakturen mit der „Nagel-Platte“
Operative Orthopädie und Traumatologie, 2009Co-Authors: David EspenAbstract:Objective Stable fixation of unstable distal radius fractures by means of a "nail-plate" with the distal plate section lying on the dorsal surface of the distal radius fragment, and the proximal nail section inside the diaphysis of the radius. Indications Unstable extraarticular fractures of the distal radius AO types A2 and A3, which can be managed by closed or indirect reduction. Intraarticular fractures of the distal radius showing a nondisplaced articular component. Also indicated in patients with osteoporosis. Contraindications Extraarticular distal radius fractures with a distal fragment too small for placement of the distal locking pegs and/or a comminution extending into the diaphyseal portion of the radius. Displaced intraarticular fractures of the distal radius. Nascent malunions of the distal radius. Surgical Technique Closed reduction of the fracture, straight dorsal incision of 3–4 cm length centered over Lister’s tubercle. The extensor pollicis longus tendon is released and retracted toward the radial side. Lister’s tubercle is exposed subperiosteally and removed with a rongeur. This creates a flat surface for seating the head of the implant. Proximal dissection is carried out to expose the fracture site and the dorsal ridge on the proximal fragment. The medullary canal is opened with an awl. The radiocarpal joint line is located by inserting a needle. The silhouette of the head of the implant is drawn with a marker pen, with its distal edge resting 4–6 mm proximal to the joint line. This is done to carve a notch on the distal edge of the proximal fragment in line with the third extensor compartment with the purpose of receiving the neck of the device. The insertion jig is assembled to the implant. The implant is then introduced in a retrograde fashion, through the fracture site, into the proximal fragment and advanced with gentle rotational motion. The head of the device is seated flush on the distal fragment. Under fluoroscopic guidance, in an anatomic lateral view, the tract for the central peg is drilled and the peg is applied in the central hole. This peg fixes the palmar tilt. By use of the jig, the proximal unicortical holes are drilled, and the proximal locking screws, which fix the radial length, are applied. After removal of the insertion jig, the remaining distal pegs are applied. During drilling, the distal fragment must be pushed up against the implant to assure that the head is flush with its surface. After application, the extensor pollicis longus tendon will course proximal to the head of the implant in the subcutaneous position while the tendons of the second and fourth extensor compartments will travel on each side of the implant, thereby avoiding tendon impingement. Postoperative Management Use of a palmar synthetic Splint for 10 days. Active range of motion of the fingers is allowed immediately after surgery. On the 11th postoperative day, a custom-formed short Arm Splint is provided and active wrist motion is started. Radiologic control 4 weeks postoperatively. Results In the time between April 2005 and October 2006, 32 distal radius fractures were treated at the author’s institution using the "nail-plate". Two complications were observed: loosening of a locking screw, and rupture of the extensor pollicis longus tendon 4 months postoperatively. In a study of more than 200 cases, only few complications were reported: a wound hematoma in a dialysis patient, loss of fixation of an articular fracture that was poorly indicated, and hypertrophic scar formation. In one patient complaining of persistent discomfort at the implantation site, the implant was removed. Operationsziel Übungsstabile Osteosynthese distaler Radiusfrakturen mittels einer „Nagel-Platte“, deren distaler "Plattenanteil" streckseitig auf dem distalen Radiusfragment platziert wird und deren proximaler "Nagelanteil" intramedullär in der Radiusdiaphyse liegt. Indikationen Instabile distale extraartikuläre Radiusfrakturen loco classico (Typ AO A2 und A3), die geschlossen oder durch indirekte instrumentelle Hilfe reponiert werden können. Intraartikuläre distale Radiusfrakturen, die keine repositionsbedürftige Stufen- oder Spaltbildung der Gelenkfläche aufweisen. Auch bei Patienten mit Osteoporose geeignet. Kontraindikationen Extraartikuläre distale Radiusfrakturen, bei denen das distale Fragment zu klein ist, um die winkelstabilen Stifte darin zu platzieren, und/oder die Trümmerzone zu groß ist, so dass die drei Verriegelungsschrauben des "Nagelanteils" in der Trümmerzone und nicht proximal davon zu liegen kommen. Gelenkfrakturen, die einer offenen, direkten Reposition bedürfen. Veraltete distale Radiusfrakturen, die sich nicht mehr reponieren lassen. Operationstechnik Geschlossene Reposition der Fraktur, 3–4 cm langer gerader Zugang über dem Tuberculum Listeri. Eröffnen des dritten Strecksehnenfachs und Retraktion der langen Daumenstrecksehne, die am Ende der Operation subkutan verbleibt. Schaffen einer ebenen Auflagefläche für den Plattenanteil der „Nagel-Platte“ durch Resektion des Lister- Tuberculums. Vorbereitung des Markkanals mittels eines Pfriems, der durch den Frakturspalt geführt wird. Bildwandlerkontrolle der Reposition und ggf. Korrektur. Einführung des Nagels mit Hilfe einer kombinierten Halte-Ziel-Vorrichtung unter Bildwandlerkontrolle. Bohren und Einbringen des zentralen, senkrecht zur Längsund Querachse des Radius ausgerichteten winkelstabilen Stifts in den Plattenanteil. Nagelverriegelung proximal des Frakturspalts mittels dreier monokortikaler Schrauben unter Verwendung der Halte-Ziel-Vorrichtung. Einbringen der beiden nach radial bzw. ulnar verlaufenden winkelstabilen Stifte in den Plattenanteil. Dynamische Prüfung der Stabilität unter Bildwandlerkontrolle. Subkutane Verlagerung der Extensor-pollicis-longus-Sehne unter Verschluss des Retinaculum extensorum zur Vermeidung eines direkten Kontakts mit dem Implantat. Weiterbehandlung Ruhigstellung des Handgelenks für 10 Tage mit einer palmaren Kunststoffschiene. Sofortige freie aktive Fingerbewegung. Ab dem 11. postoperativen Tag aktive Mobilisierung des Handgelenks. Röntgenkontrolle 4 Wochen postoperativ. Ergebnisse In der Zeit von April 2005 bis Oktober 2006 wurden an der eigenen Institution 32 distale Radiusfrakturen mit der „Nagel-Platte“ versorgt, wobei zwei Komplikationen auftraten: eine Lockerung einer Verriegelungsschraube und eine Ruptur der langen Daumenstrecksehne 4 Monate postoperativ. In einer Studie mit mehr als 200 Fällen wurden nur selten Komplikationen beobachtet: Ein Wundhämatom bei einem Dialyse patienten, eine sekundäre Dislokation einer Fraktur mit Gelenkbeteiligung (fehlerhafte Operationsindikation) und eine Keloidbildung der Narbe. Nur ein Patient beklagte persistierende Beschwerden an der Implantationsstelle, worauf der Nagel entfernt wurde.
A. Berger - One of the best experts on this subject based on the ideXlab platform.
-
Freie funktionelle Transplantation des Musculus gracilis zur Wiederherstellung der Ellbogenbeugung bei posttraumatischen Armplexusschäden
Operative Orthopadie Und Traumatologie, 2020Co-Authors: A. Berger, Robert HiernerAbstract:ObjectiveReconstruction of powerful active elbow flexion. Reconstruction of missing muscle unit by neurovascular pedicled functional muscle transplantation.IndicationsTreatment of last choice for - secondary reconstruction of active elbow flexion in case of□ complete lesion of the brachial plexus or musculocutaneous nerve (M0 muscle function = replacement indication),□ partial but incomplete lesion of the brachial plexus or musculocutaneous nerve (M1- 3 muscle function = augmentation indication);- replacement of the elbow flexor muscles in case of primary muscle loss (tumor, trauma).ContraindicationsConcomitant lesions of the axillary artery. No adequate donor nerve.Relative: no sensibility at all at the foreArm and hand.Surgical TechniqueFree functional biarticular myocutaneous transplantation of gracilis muscle. A myocutaneous gracilis flap is raised at the thigh. At the upper Arm the flap is fixed proximally to the coracoid process or the lateral clavicle. The distal insertion is sutured to the distal biceps tendon. Vascular anastomoses are carried out in end-to-side fashion with the brachial artery and vein. Nerval coaptation is done in end-to-end technique using the muculocutaneous nerve.Postoperative ManagementComplete immobilization for 6 weeks.Dorsal upper Arm Splint until sufficient muscle power (M 4 ). Progressive increase of active range of motion for another 6 weeks. Continuation of physiotherapy for 12-18 months. Postoperative standardized compression therapy, combined with scar therapy (silicone sheet).ResultsFunctionally useful results can be expected in 60-75% of patients, especially if there is some residual function (M1 or M2) left (“augmentation indication”). Early free functional muscle transplantation shows best results in patients with direct muscle defect, because all vascular and neuronal structures are still available, and no secondary changes such as fibrosis or joint stiffness are present yet. There are inconsistent results for patients with neurologic insufficiency (i.e., total brachial plexus palsy) or mixed neuromuscular insufficiency, such as compartment syndrome. Especially in complete brachial plexus lesion, free functional muscle transfer is often the only treatment option. Provided there is a good patient selection, satisfactory results can be achieved for elbow flexion. Whether a higher number of axons, as provided by the contralateral C7 transfer, will lead to better results is the topic of an ongoing study.
-
Freie funktionelle Transplantation des Musculus gracilis zur Wiederherstellung der Ellbogenbeugung bei posttraumatischen Armplexusschäden
Operative Orthopädie und Traumatologie, 2009Co-Authors: A. Berger, Robert HiernerAbstract:Operationsziel Wiederherstellung der aktiven Ellbogenfunktion als Grundvoraussetzung für die bimanuelle Tätigkeit durch Ersatz einer fehlenden funktionellen Muskeleinheit durch eine freie funktionelle Muskeltransplantation. Indikationen Der Eingriff stellt eine Therapie der letzten Wahl dar. Ersatzindikation: Komplette Läsionen des Plexus brachialis oder des Nervus musculocutaneus (M0). Augmentationsindikation: Partielle, aber ungenügende Regeneration des Plexus brachialis oder des Nervus musculocutaneus (M1–_3). Ersatz der Ellbogenbeuger bei primärem Muskelverlust durch Trauma oder Tumor als „Effektorganersatz“. Kontraindikationen Gefäßläsionen der Arteria axillaris. Ungenügende Möglichkeit der Neurotisation durch inadäquaten Spendernerv. Relativ: Asensibilität im UnterArm- und Handbereich. Operationstechnik Freie funktionelle biartikuläre myokutane Musculus-gracilis-Transplantation. Der Musculus gracilis wird mit einem darüberliegenden Hautanteil am Oberschenkel an seinem Gefäß-Nerven-Stiel freipräpariert und am OberArm als Ersatz für den Musculus biceps verwendet. Proximal wird das Transplantat am Processus coracoideus oder an der lateralen Klavikula befestigt, distal an der distalen Bizepssehne. Die Gefäße werden in End-zu-Seit-Technik an die Vasa brachialia angeschlossen. Der Nerv wird mit dem Stumpf des Nervus musculocutaneus koaptiert. Weiterbehandlung Vollständige Immobilisation für 6 Wochen. Anlage einer dorsalen OberArmschiene in 90° Beugung im Ellbogengelenk bis zur ausreichenden Muskelfunktion (12–18 Monate). Nach 6 Wochen intensive Physiotherapie zur Erhaltung der passiven Beweglichkeit. Bei Einsetzen der Muskelkontraktion nach 6–9 Monaten Biofeedbacktraining. Progressiver passiver Bewegungsaufbau („Üben aus der Schiene“) bis zur ausreichenden Muskelkontraktion (M_4). Fortführung der physiotherapeutischen Begleittherapie für 12–18 Monate. Postoperative standardisierte Kompressionstherapie, evtl. kombiniert mit Narbentherapie (Silikonplatte). Ergebnisse Funktionell wertvolle Ergebnisse bei 60–75% der Patienten, vor allem bei ungenügender Restfunktion der regenerierten Ellbogenbeuger („Augmentationsindikation“). Die frühzeitige freie funktionelle Muskeltransplantation bei isolierter muskulärer (myogener) Insuffizienz zeigt im Allgemeinen die besten Resultate, da eine ausreichende autochthone Gefäß-Nerven-Versorgung vorliegt und meist keine sekundären Veränderungen wie Gelenksteifen oder Fibrosen bestehen. Die funktionellen Ergebnisse nach freier funktioneller Muskeltransplantation bei kompletter Läsion des Plexus brachialis (neurogene Insuffizienz) und Folgezustand nach Kompartmentsyndrom (gemischte neuromuskuläre Insuffizienz) zeigen eine große Streubreite. Die freie funktionelle Muskeltransplantation stellt oft die einzige noch mögliche Therapie dar. Bei guter Patientenauswahl kann vor allem im Ellbogenbereich mit hoher Wahrscheinlichkeit eine funktionelle Bewegung erreicht werden. Objective Reconstruction of powerful active elbow flexion. Reconstruction of missing muscle unit by neurovascular pedicled functional muscle transplantation. Indications Treatment of last choice for – secondary reconstruction of active elbow flexion in case of □ complete lesion of the brachial plexus or musculocutaneous nerve (M0 muscle function = replacement indication), □ partial but incomplete lesion of the brachial plexus or musculocutaneous nerve (M1–_3 muscle function = augmentation indication); – replacement of the elbow flexor muscles in case of primary muscle loss (tumor, trauma). Contraindications Concomitant lesions of the axillary artery. No adequate donor nerve. Relative: no sensibility at all at the foreArm and hand. Surgical Technique Free functional biarticular myocutaneous transplantation of gracilis muscle. A myocutaneous gracilis flap is raised at the thigh. At the upper Arm the flap is fixed proximally to the coracoid process or the lateral clavicle. The distal insertion is sutured to the distal biceps tendon. Vascular anastomoses are carried out in end-to-side fashion with the brachial artery and vein. Nerval coaptation is done in end-to-end technique using the muculocutaneous nerve. Postoperative Management Complete immobilization for 6 weeks. Dorsal upper Arm Splint until sufficient muscle power (M_4). Progressive increase of active range of motion for another 6 weeks. Continuation of physiotherapy for 12–18 months. Postoperative standardized compression therapy, combined with scar therapy (silicone sheet). Results Functionally useful results can be expected in 60–75% of patients, especially if there is some residual function (M1 or M2) left (“augmentation indication”). Early free functional muscle transplantation shows best results in patients with direct muscle defect, because all vascular and neuronal structures are still available, and no secondary changes such as fibrosis or joint stiffness are present yet. There are inconsistent results for patients with neurologic insufficiency (i.e., total brachial plexus palsy) or mixed neuromuscular insufficiency, such as compartment syndrome. Especially in complete brachial plexus lesion, free functional muscle transfer is often the only treatment option. Provided there is a good patient selection, satisfactory results can be achieved for elbow flexion. Whether a higher number of axons, as provided by the contralateral C7 transfer, will lead to better results is the topic of an ongoing study.
-
Verpflanzung des Musculus pectoralis major zur Wiederherstellung der Ellbogenbeugung bei posttraumatischen Armplexusschäden
Operative Orthopädie und Traumatologie, 2009Co-Authors: Robert Hierner, A. BergerAbstract:Objective Active elbow flexion is necessary for bimanual tasks. Reconstruction of powerful active elbow flexion. Reconstruction of missing muscle unit by neurovascular pedicled functional muscle transposition. Indications Treatment of second choice (first choice bipolar latissimus dorsi transfer according to Zancolli & Mitre, transfer of the flexor/pronator muscle onto the distal humerus, or transposition of the triceps onto the biceps): – (Secondary) reconstruction of active elbow flexion in case of lesion of the brachial plexus or musculocutaneous nerve. – Replacement of the elbow flexor muscles in case of primary muscle loss (tumor, trauma). Contraindications Ongoing spontaneous or postoperative nerve regeneration. Ankylosis of the elbow joint (in case of good shoulder and hand function, one should consider arthrolysis or even total joint replacement). Insufficient power of the pectoralis major muscle (< M_4). Lesion of the axillary artery involving the thoracoacromial artery. Relative: concomitant lesion of the latissimus dorsi and teres major muscles (loss of glenohumeral adduction [thoracohumeral pinch]. Surgical Technique Distal muscle transposition: transposition of the origin – pars abdominalis, pars sternocostalis, pars clavicularis (unipolar or bipolar, partial or complete distal transfer): – Unipolar partial pectoralis major muscle transposition according to Clark. – Bipolar partial pectoralis major muscle transposition according to Schottstaedt et al. – Bipolar complete pectoralis major muscle transposition according to Dautry et al. and Carroll & Kleinmann, respectively, possibly in combination with transfer of the pectoralis minor muscle. – Myocutaneous flap in case of concomitant skin defect at the upper Arm level. Proximal tendon transfer: transposition of the tendinous insertion at the humerus of the pectoralis major muscle. Postoperative Management Immobilization for 6 weeks in a dorsal upper Arm Splint, a Gilchrist bandage or a thorax-Arm abduction orthesis with the elbow in 90° flexion and supination. Early passive motion depending on pain within the sector 90–140°. Progressive increase of active range of motion after 6 weeks. Protected exercise from “out of the Splint” with increasing elbow extension of 10° per week. It is important, that there is still an extension lag of 30–40° at 3 months after transfer, in order to protect the reinnervated muscle and avoid overstretching. Although complete elbow extension should be the aim after 1 year, most patients will keep an extension lag of 20–30°. Physiotherapy must continue for 12–18 months. Postoperative standardized compression therapy, combined with scar therapy (silicone sheet). Results Meta-analysis of the literature and personal results show functional (very good and good) results in 54–86% of patients. There are only few complications. Operationsziel Wiederherstellung der aktiven Ellbogenbeugung, Grundvoraussetzung für die bimanuelle Tätigkeit. Ersatz einer fehlenden funktionellen Muskeleinheit durch neurovaskulär gestielte funktionelle Muskeltransposition. Indikationen Therapie der zweiten Wahl (erste Wahl bipolare Transposition des Musculus latissimus dorsi nach Zancolli & Mitre, Proximalisierung der Flexor-/Pronatormuskeln auf den distalen Humerus/Steindler-Transfer oder Trizeps-auf-Bizeps-Transposition): – (Sekundäre) Wiederherstellung der aktiven Ellbogenbeugung bei Läsionen des Plexus brachialis oder Nervus musculocutaneus. – Ersatz des Ellbogenbeuger bei primärem Muskelverlust (Trauma, Tumor). Kontraindikationen Mögliche Besserung der Lähmung durch weitere Reinnervation, spontan oder nach neurochirurgischem Eingriff. Posttraumatisch oder arthrotisch eingesteiftes Ellbogengelenk (bei guter Schulter- und Handfunktion kann die Möglichkeit einer Arthrolyse oder sogar Gelenkprothese erwogen werden). Unzureichender Kraftgrad des Musculus pectoralis major (mindestens M_4 erforderlich). Läsionen der Arteria axillaris mit Einbeziehung der Arteria thoracoacromialis. Relativ: Gleichzeitige Schädigung der Musculi latissimus dorsi et teres major (fehlende Adduktion im Schulterbereich [thorakohumerale Zangenfunktion]). Operationstechnik Distale Muskeltransposition: Transposition des Ursprungs – Pars abdominalis, Pars sternocostalis, Pars clavicularis (unipolarer oder bipolarer, partieller oder kompletter distaler Transfer): – Unipolare partielle Transposition des Muculus pectoralis major nach Clark. – Bipolare partielle Transposition des Musculus pectoralis major nach Schottstaedt et al. – Bipolare komplette Transposition des Musculus pectoralis major nach Dautry et al. bzw. Carroll & Kleinmann, evtl. in Kombination mit dem Musculus pectoralis minor. – Muskel-Haut-Lappenplastik bei zusätzlichem Hautdefekt. Proximale Sehnentransposition: Transposition der Sehnen des Musculus pectoralis. Weiterbehandlung Immobilisation in dorsaler OberArmschiene, einem Gilchrist-Verband oder einer Thorax-Arm-Abduktionsorthese in 90° Flexionsstellung und Supination für 6 Wochen. Progressiver Bewegungsaufbau nach 6 Wochen: Die passive Ellbogenstreckung und aktive Ellbogenbeugung werden bis zum Erreichen des maximal möglichen Bewegungsausmaßes „aus der Schiene heraus“ geübt. Am Ende des 3. Monats sollte ein Reststreckdefizit von 30–40° nicht unterschritten werden (behutsamer Belastungsaufbau, vor allem bei reinnervierter Muskulatur). Obwohl die komplette Ellbogenstreckung das Therapieziel sein muss, kann diese nicht bei allen Patienten erreicht werden. Ein bleibendes Streckdefizit wird häufig für eine kräftigere Ellbogenbeugung in Kauf genommen. Fortführung der physiotherapeutischen Begleittherapie für 12–18 Monate. Postoperative standardisierte Kompressionstherapie, evtl. kombiniert mit Narbentherapie (Silikonauflage). Ergebnisse Der Vergleich der eigenen Ergebnisse bei sechs operierten Patienten mit denen in der Literatur zeigt, dass eine adäquate Ellbogenbeugung in Bezug auf Bewegungsausmaß (Ellbogenbeugung > 120°) und Kraftleistung (mindestens 1,5 kg fixiert am Handgelenk über den gesamten Bewegungsraum) in 54–86% zu erwarten ist. Darüber hinaus besteht nur eine geringe Komplikationsrate.
Juan Antonio Juanes - One of the best experts on this subject based on the ideXlab platform.
-
Design of an Orthopedic Product by Using Additive Manufacturing Technology: The Arm Splint
Journal of Medical Systems, 2018Co-Authors: Fernando Blaya, Pilar San Pedro, Julia López Silva, Enrique Soriano Heras, Roberto D’amato, Juan Antonio JuanesAbstract:The traditional fabrication process of custom-made Splints has hardly undergone any progress since the beginning of its use at the end of the eighteenth century. New manufacturing techniques and the new materials can help to modernize this treatment method of fractures. The use of Additive Manufacturing has been proposed in recent years as an alternative process for the manufacture of Splints and there has been an increase in public awareness and exploration. For this reason, in this study a Splint model printed in 3D, that replaces the deficiencies of the cast maintaining its virtues, has been proposed. The proposed methodology is based on three-dimensional digitalization techniques and 3D modeling with reverse engineering software. The work integrates different scientific disciplines to achieve its main goal: to improve life quality of the patient. In addition, the Splint has been designed based on the principles of sustainable development. The design of Splint is made of Polycarbonate by technique of Additive Manufacturing with fused deposition manufacturing, and conceived with organic shapes, customizing openings and closing buttons with rubber. In this preliminary study the final result is a prototype of the 3D printed Arm Splint in a reduced scale by using PLA as material.
-
study design and prototyping of Arm Splint with additive manufacturing process
Technological Ecosystems for Enhancing Multiculturality, 2017Co-Authors: Fernando Blaya, Pilar San Pedro, Juan Antonio Juanes, Julia Lopezsilva, Roberto Damato, Juan Gomez LagandaraAbstract:The aim1 of this study is to propose the additive manufactured 3D printed technique for adaptive organic design Splint as a solution for the problems generated by the use of casts in medical applications. Since the end of the XVIII century, when casts begin to be used, they have barely improved. Thanks to new manufacture and material techniques, we can improve and modernize this commonly used fracture treatment method. Based on three dimensional digitalization techniques and modeling via reverse engineering software, a 3D printed Splint is proposed, which will provide the benefits of cast avoiding its deficiencies.
-
TEEM - Study, design and prototyping of Arm Splint with additive manufacturing process
Proceedings of the 5th International Conference on Technological Ecosystems for Enhancing Multiculturality - TEEM 2017, 2017Co-Authors: Fernando Blaya, Juan Antonio Juanes, Pilar San Pedro, Julia. Lopez-silva, Roberto D'amato, Juan Gomez LagandaraAbstract:The aim1 of this study is to propose the additive manufactured 3D printed technique for adaptive organic design Splint as a solution for the problems generated by the use of casts in medical applications. Since the end of the XVIII century, when casts begin to be used, they have barely improved. Thanks to new manufacture and material techniques, we can improve and modernize this commonly used fracture treatment method. Based on three dimensional digitalization techniques and modeling via reverse engineering software, a 3D printed Splint is proposed, which will provide the benefits of cast avoiding its deficiencies.
Fernando Blaya - One of the best experts on this subject based on the ideXlab platform.
-
Design of an Orthopedic Product by Using Additive Manufacturing Technology: The Arm Splint
Journal of Medical Systems, 2018Co-Authors: Fernando Blaya, Pilar San Pedro, Julia López Silva, Enrique Soriano Heras, Roberto D’amato, Juan Antonio JuanesAbstract:The traditional fabrication process of custom-made Splints has hardly undergone any progress since the beginning of its use at the end of the eighteenth century. New manufacturing techniques and the new materials can help to modernize this treatment method of fractures. The use of Additive Manufacturing has been proposed in recent years as an alternative process for the manufacture of Splints and there has been an increase in public awareness and exploration. For this reason, in this study a Splint model printed in 3D, that replaces the deficiencies of the cast maintaining its virtues, has been proposed. The proposed methodology is based on three-dimensional digitalization techniques and 3D modeling with reverse engineering software. The work integrates different scientific disciplines to achieve its main goal: to improve life quality of the patient. In addition, the Splint has been designed based on the principles of sustainable development. The design of Splint is made of Polycarbonate by technique of Additive Manufacturing with fused deposition manufacturing, and conceived with organic shapes, customizing openings and closing buttons with rubber. In this preliminary study the final result is a prototype of the 3D printed Arm Splint in a reduced scale by using PLA as material.
-
study design and prototyping of Arm Splint with additive manufacturing process
Technological Ecosystems for Enhancing Multiculturality, 2017Co-Authors: Fernando Blaya, Pilar San Pedro, Juan Antonio Juanes, Julia Lopezsilva, Roberto Damato, Juan Gomez LagandaraAbstract:The aim1 of this study is to propose the additive manufactured 3D printed technique for adaptive organic design Splint as a solution for the problems generated by the use of casts in medical applications. Since the end of the XVIII century, when casts begin to be used, they have barely improved. Thanks to new manufacture and material techniques, we can improve and modernize this commonly used fracture treatment method. Based on three dimensional digitalization techniques and modeling via reverse engineering software, a 3D printed Splint is proposed, which will provide the benefits of cast avoiding its deficiencies.
-
TEEM - Study, design and prototyping of Arm Splint with additive manufacturing process
Proceedings of the 5th International Conference on Technological Ecosystems for Enhancing Multiculturality - TEEM 2017, 2017Co-Authors: Fernando Blaya, Juan Antonio Juanes, Pilar San Pedro, Julia. Lopez-silva, Roberto D'amato, Juan Gomez LagandaraAbstract:The aim1 of this study is to propose the additive manufactured 3D printed technique for adaptive organic design Splint as a solution for the problems generated by the use of casts in medical applications. Since the end of the XVIII century, when casts begin to be used, they have barely improved. Thanks to new manufacture and material techniques, we can improve and modernize this commonly used fracture treatment method. Based on three dimensional digitalization techniques and modeling via reverse engineering software, a 3D printed Splint is proposed, which will provide the benefits of cast avoiding its deficiencies.