Ascophyllum

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 2517 Experts worldwide ranked by ideXlab platform

Michelle S Tierney - One of the best experts on this subject based on the ideXlab platform.

  • uplc ms profiling of low molecular weight phlorotannin polymers in Ascophyllum nodosum pelvetia canaliculata and fucus spiralis
    Metabolomics, 2014
    Co-Authors: Michelle S Tierney, Anna Solervila, Anna K Croft, Nigel P Brunton, Thomas J Smyth
    Abstract:

    Phlorotannins are a group of complex polymers, found in particular brown macroalgae, composed solely of the monomer phloroglucinol (1,3,5-trihydroxybenzene). Their structural complexity arises from the number of possible linkage positions between each monomer unit. This study aimed to profile the phlorotannin metabolite composition and the complexity of isomerisation present in brown macroalgae Ascophyllum nodosum, Pelvetia canaliculata and Fucus spiralis using UPLC-MS utilising a tandem quadrupole mass spectrometer. Phlorotannin-enriched fractions from water and aqueous ethanol extracts were analysed by UPLC-MS performed in multiple reaction monitoring mode to detect molecular ions consistent with the molecular weights of phlorotannins. Ascophyllum nodosum and P. canaliculata appeared to contain predominantly larger phlorotannins (degree of polymerisation (DP) of 6–13 monomers) compared to F. spiralis (DP of 4–6 monomers). This is the first report observing the complex chromatographic separation and metabolomic profiling of low molecular weight phlorotannins consisting of more than ten monomers. Extracted ion chromatograms, for each of the MRM transitions, for each species were analysed to profile the level of isomerisation for specific molecular weights of phlorotannins between 3 and 16 monomers. The level of phlorotannin isomerisation within the extracts of the individual macroalgal species differed to some degree, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. A similar UPLC-MS/MS separation procedure, as outlined in this study, may be used in the future as a means of screening the metabolite profile of macroalgal extracts, therefore, allowing extract consistency to be monitored for standardisation purposes.

  • uplc ms profiling of low molecular weight phlorotannin polymers in Ascophyllum nodosum pelvetia canaliculata and fucus spiralis
    Metabolomics, 2014
    Co-Authors: Michelle S Tierney, Anna Solervila, Anna K Croft, Nigel P Brunton, Thomas J Smyth
    Abstract:

    Phlorotannins are a group of complex polymers, found in particular brown macroalgae, composed solely of the monomer phloroglucinol (1,3,5-trihydroxybenzene). Their structural complexity arises from the number of possible linkage positions between each monomer unit. This study aimed to profile the phlorotannin metabolite composition and the complexity of isomerisation present in brown macroalgae Ascophyllum nodosum, Pelvetia canaliculata and Fucus spiralis using UPLC-MS utilising a tandem quadrupole mass spectrometer. Phlorotannin-enriched fractions from water and aqueous ethanol extracts were analysed by UPLC-MS performed in multiple reaction monitoring mode to detect molecular ions consistent with the molecular weights of phlorotannins. Ascophyllum nodosum and P. canaliculata appeared to contain predominantly larger phlorotannins (degree of polymerisation (DP) of 6–13 monomers) compared to F. spiralis (DP of 4–6 monomers). This is the first report observing the complex chromatographic separation and metabolomic profiling of low molecular weight phlorotannins consisting of more than ten monomers. Extracted ion chromatograms, for each of the MRM transitions, for each species were analysed to profile the level of isomerisation for specific molecular weights of phlorotannins between 3 and 16 monomers. The level of phlorotannin isomerisation within the extracts of the individual macroalgal species differed to some degree, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. A similar UPLC-MS/MS separation procedure, as outlined in this study, may be used in the future as a means of screening the metabolite profile of macroalgal extracts, therefore, allowing extract consistency to be monitored for standardisation purposes.

Thomas J Smyth - One of the best experts on this subject based on the ideXlab platform.

  • uplc ms profiling of low molecular weight phlorotannin polymers in Ascophyllum nodosum pelvetia canaliculata and fucus spiralis
    Metabolomics, 2014
    Co-Authors: Michelle S Tierney, Anna Solervila, Anna K Croft, Nigel P Brunton, Thomas J Smyth
    Abstract:

    Phlorotannins are a group of complex polymers, found in particular brown macroalgae, composed solely of the monomer phloroglucinol (1,3,5-trihydroxybenzene). Their structural complexity arises from the number of possible linkage positions between each monomer unit. This study aimed to profile the phlorotannin metabolite composition and the complexity of isomerisation present in brown macroalgae Ascophyllum nodosum, Pelvetia canaliculata and Fucus spiralis using UPLC-MS utilising a tandem quadrupole mass spectrometer. Phlorotannin-enriched fractions from water and aqueous ethanol extracts were analysed by UPLC-MS performed in multiple reaction monitoring mode to detect molecular ions consistent with the molecular weights of phlorotannins. Ascophyllum nodosum and P. canaliculata appeared to contain predominantly larger phlorotannins (degree of polymerisation (DP) of 6–13 monomers) compared to F. spiralis (DP of 4–6 monomers). This is the first report observing the complex chromatographic separation and metabolomic profiling of low molecular weight phlorotannins consisting of more than ten monomers. Extracted ion chromatograms, for each of the MRM transitions, for each species were analysed to profile the level of isomerisation for specific molecular weights of phlorotannins between 3 and 16 monomers. The level of phlorotannin isomerisation within the extracts of the individual macroalgal species differed to some degree, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. A similar UPLC-MS/MS separation procedure, as outlined in this study, may be used in the future as a means of screening the metabolite profile of macroalgal extracts, therefore, allowing extract consistency to be monitored for standardisation purposes.

  • uplc ms profiling of low molecular weight phlorotannin polymers in Ascophyllum nodosum pelvetia canaliculata and fucus spiralis
    Metabolomics, 2014
    Co-Authors: Michelle S Tierney, Anna Solervila, Anna K Croft, Nigel P Brunton, Thomas J Smyth
    Abstract:

    Phlorotannins are a group of complex polymers, found in particular brown macroalgae, composed solely of the monomer phloroglucinol (1,3,5-trihydroxybenzene). Their structural complexity arises from the number of possible linkage positions between each monomer unit. This study aimed to profile the phlorotannin metabolite composition and the complexity of isomerisation present in brown macroalgae Ascophyllum nodosum, Pelvetia canaliculata and Fucus spiralis using UPLC-MS utilising a tandem quadrupole mass spectrometer. Phlorotannin-enriched fractions from water and aqueous ethanol extracts were analysed by UPLC-MS performed in multiple reaction monitoring mode to detect molecular ions consistent with the molecular weights of phlorotannins. Ascophyllum nodosum and P. canaliculata appeared to contain predominantly larger phlorotannins (degree of polymerisation (DP) of 6–13 monomers) compared to F. spiralis (DP of 4–6 monomers). This is the first report observing the complex chromatographic separation and metabolomic profiling of low molecular weight phlorotannins consisting of more than ten monomers. Extracted ion chromatograms, for each of the MRM transitions, for each species were analysed to profile the level of isomerisation for specific molecular weights of phlorotannins between 3 and 16 monomers. The level of phlorotannin isomerisation within the extracts of the individual macroalgal species differed to some degree, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. A similar UPLC-MS/MS separation procedure, as outlined in this study, may be used in the future as a means of screening the metabolite profile of macroalgal extracts, therefore, allowing extract consistency to be monitored for standardisation purposes.

Anna K Croft - One of the best experts on this subject based on the ideXlab platform.

  • uplc ms profiling of low molecular weight phlorotannin polymers in Ascophyllum nodosum pelvetia canaliculata and fucus spiralis
    Metabolomics, 2014
    Co-Authors: Michelle S Tierney, Anna Solervila, Anna K Croft, Nigel P Brunton, Thomas J Smyth
    Abstract:

    Phlorotannins are a group of complex polymers, found in particular brown macroalgae, composed solely of the monomer phloroglucinol (1,3,5-trihydroxybenzene). Their structural complexity arises from the number of possible linkage positions between each monomer unit. This study aimed to profile the phlorotannin metabolite composition and the complexity of isomerisation present in brown macroalgae Ascophyllum nodosum, Pelvetia canaliculata and Fucus spiralis using UPLC-MS utilising a tandem quadrupole mass spectrometer. Phlorotannin-enriched fractions from water and aqueous ethanol extracts were analysed by UPLC-MS performed in multiple reaction monitoring mode to detect molecular ions consistent with the molecular weights of phlorotannins. Ascophyllum nodosum and P. canaliculata appeared to contain predominantly larger phlorotannins (degree of polymerisation (DP) of 6–13 monomers) compared to F. spiralis (DP of 4–6 monomers). This is the first report observing the complex chromatographic separation and metabolomic profiling of low molecular weight phlorotannins consisting of more than ten monomers. Extracted ion chromatograms, for each of the MRM transitions, for each species were analysed to profile the level of isomerisation for specific molecular weights of phlorotannins between 3 and 16 monomers. The level of phlorotannin isomerisation within the extracts of the individual macroalgal species differed to some degree, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. A similar UPLC-MS/MS separation procedure, as outlined in this study, may be used in the future as a means of screening the metabolite profile of macroalgal extracts, therefore, allowing extract consistency to be monitored for standardisation purposes.

  • uplc ms profiling of low molecular weight phlorotannin polymers in Ascophyllum nodosum pelvetia canaliculata and fucus spiralis
    Metabolomics, 2014
    Co-Authors: Michelle S Tierney, Anna Solervila, Anna K Croft, Nigel P Brunton, Thomas J Smyth
    Abstract:

    Phlorotannins are a group of complex polymers, found in particular brown macroalgae, composed solely of the monomer phloroglucinol (1,3,5-trihydroxybenzene). Their structural complexity arises from the number of possible linkage positions between each monomer unit. This study aimed to profile the phlorotannin metabolite composition and the complexity of isomerisation present in brown macroalgae Ascophyllum nodosum, Pelvetia canaliculata and Fucus spiralis using UPLC-MS utilising a tandem quadrupole mass spectrometer. Phlorotannin-enriched fractions from water and aqueous ethanol extracts were analysed by UPLC-MS performed in multiple reaction monitoring mode to detect molecular ions consistent with the molecular weights of phlorotannins. Ascophyllum nodosum and P. canaliculata appeared to contain predominantly larger phlorotannins (degree of polymerisation (DP) of 6–13 monomers) compared to F. spiralis (DP of 4–6 monomers). This is the first report observing the complex chromatographic separation and metabolomic profiling of low molecular weight phlorotannins consisting of more than ten monomers. Extracted ion chromatograms, for each of the MRM transitions, for each species were analysed to profile the level of isomerisation for specific molecular weights of phlorotannins between 3 and 16 monomers. The level of phlorotannin isomerisation within the extracts of the individual macroalgal species differed to some degree, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. A similar UPLC-MS/MS separation procedure, as outlined in this study, may be used in the future as a means of screening the metabolite profile of macroalgal extracts, therefore, allowing extract consistency to be monitored for standardisation purposes.

Soizic Prado - One of the best experts on this subject based on the ideXlab platform.

  • Bacterial-fungal interactions in the kelp endomicrobiota drive autoinducer-2 quorum sensing
    Frontiers in Microbiology, 2019
    Co-Authors: Anne Tourneroche, Marine Vallet, Karine Escoubeyrou, Alain Paris, Cédric Hubas, Elodie Blanchet, Raphaël Lami, Soizic Prado
    Abstract:

    Brown macroalgae are an essential component of temperate coastal ecosystems and a growing economic sector. They harbor diverse microbial communities that regulate algal development and health. This algal holobiont is dynamic and achieves equilibrium via a complex network of microbial and host interactions. We now report that bacterial and fungal endophytes associated with four brown algae (Ascophyllum nodosum, Pelvetia canaliculata, Laminaria digitata, and Saccharina latissima) produce metabolites that interfere with bacterial autoinducer-2 quorum sensing, a signaling system implicated in virulence and host colonization. Additionally, we performed co-culture experiments combined to a metabolomic approach and demonstrated that microbial interactions influence production of metabolites, including metabolites involved in quorum sensing. Collectively, the data highlight autoinducer-2 quorum sensing as a key metabolite in the complex network of interactions within the algal holobiont.

Anne Tourneroche - One of the best experts on this subject based on the ideXlab platform.

  • Bacterial-fungal interactions in the kelp endomicrobiota drive autoinducer-2 quorum sensing
    Frontiers in Microbiology, 2019
    Co-Authors: Anne Tourneroche, Marine Vallet, Karine Escoubeyrou, Alain Paris, Cédric Hubas, Elodie Blanchet, Raphaël Lami, Soizic Prado
    Abstract:

    Brown macroalgae are an essential component of temperate coastal ecosystems and a growing economic sector. They harbor diverse microbial communities that regulate algal development and health. This algal holobiont is dynamic and achieves equilibrium via a complex network of microbial and host interactions. We now report that bacterial and fungal endophytes associated with four brown algae (Ascophyllum nodosum, Pelvetia canaliculata, Laminaria digitata, and Saccharina latissima) produce metabolites that interfere with bacterial autoinducer-2 quorum sensing, a signaling system implicated in virulence and host colonization. Additionally, we performed co-culture experiments combined to a metabolomic approach and demonstrated that microbial interactions influence production of metabolites, including metabolites involved in quorum sensing. Collectively, the data highlight autoinducer-2 quorum sensing as a key metabolite in the complex network of interactions within the algal holobiont.