Attenuation Mechanisms

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 23943 Experts worldwide ranked by ideXlab platform

Paul Babitzke - One of the best experts on this subject based on the ideXlab platform.

  • NusG-Dependent RNA Polymerase Pausing and Tylosin-Dependent Ribosome Stalling Are Required for Tylosin Resistance by Inducing 23S rRNA Methylation in Bacillus subtilis
    mBio, 2019
    Co-Authors: Helen Yakhnin, Alexander V. Yakhnin, Brandon L. Mouery, Zachary F. Mandell, Catherine Karbasiafshar, Mikhail Kashlev, Paul Babitzke
    Abstract:

    ABSTRACT Macrolide antibiotics bind to 23S rRNA within the peptide exit tunnel of the ribosome, causing the translating ribosome to stall when an appropriately positioned macrolide arrest motif is encountered in the nascent polypeptide. Tylosin is a macrolide antibiotic produced by Streptomyces fradiae. Resistance to tylosin in S. fradiae is conferred by methylation of 23S rRNA by TlrD and RlmAII. Here, we demonstrate that yxjB encodes RlmAII in Bacillus subtilis and that YxjB-specific methylation of 23S rRNA in the peptide exit tunnel confers tylosin resistance. Growth in the presence of subinhibitory concentrations of tylosin results in increased rRNA methylation and increased resistance. In the absence of tylosin, yxjB expression is repressed by transcription Attenuation and translation Attenuation Mechanisms. Tylosin-dependent induction of yxjB expression relieves these two repression Mechanisms. Induction requires tylosin-dependent ribosome stalling at an RYR arrest motif at the C terminus of a leader peptide encoded upstream of yxjB. Furthermore, NusG-dependent RNA polymerase pausing between the leader peptide and yxjB coding sequences is essential for tylosin-dependent induction. Pausing synchronizes the position of RNA polymerase with ribosome position such that the stalled ribosome prevents transcription termination and formation of an RNA structure that sequesters the yxjB ribosome binding site. On the basis of our results, we are renaming yxjB as tlrB. IMPORTANCE Antibiotic resistance is a growing health concern. Resistance Mechanisms have evolved that provide bacteria with a growth advantage in their natural habitat such as the soil. We determined that B. subtilis, a Gram-positive soil organism, has a mechanism of resistance to tylosin, a macrolide antibiotic commonly used in the meat industry. Tylosin induces expression of yxjB, which encodes an enzyme that methylates 23S rRNA. YxjB-dependent methylation of 23S rRNA confers tylosin resistance. NusG-dependent RNA polymerase pausing and tylosin-dependent ribosome stalling induce yxjB expression, and hence tylosin resistance, by preventing transcription termination upstream of the yxjB coding sequence and by preventing repression of yxjB translation.

  • modular organization of the nusa and nusg stimulated rna polymerase pause signal that participates in the bacillus subtilis trp operon Attenuation mechanism
    Journal of Bacteriology, 2017
    Co-Authors: Smarajit Mondal, Alexander V. Yakhnin, Paul Babitzke
    Abstract:

    The Bacillus subtilis trpEDCFBA operon is regulated by a transcription Attenuation mechanism in which tryptophan-activated TRAP binds to the nascent transcript and blocks the formation of an antiterminator structure such that the formation of an overlapping intrinsic terminator causes termination in the 5' untranslated region (5' UTR). In the absence of bound TRAP, the antiterminator forms and transcription continues into the trp genes. RNA polymerase pauses at positions U107 and U144 in the 5' UTR. The general transcription elongation factors NusA and NusG stimulate pausing at both positions. NusG-stimulated pausing at U144 requires sequence-specific contacts with a T tract in the nontemplate DNA (ntDNA) strand within the paused transcription bubble. Pausing at U144 participates in a trpE translation repression mechanism. Since U107 just precedes the critical overlap between the antiterminator and terminator structures, pausing at this position is thought to participate in Attenuation. Here we carried out in vitro pausing and termination experiments to identify components of the U107 pause signal and to determine whether pausing affects the termination efficiency in the 5' UTR. We determined that the U107 and U144 pause signals are organized in a modular fashion containing distinct RNA hairpin, U-tract, and T-tract components. NusA-stimulated pausing was affected by hairpin strength and the U-tract sequence, whereas NusG-stimulated pausing was affected by hairpin strength and the T-tract sequence. We also determined that pausing at U107 results in increased TRAP-dependent termination in the 5' UTR, implying that NusA- and NusG-stimulated pausing participates in the trp operon Attenuation mechanism by providing additional time for TRAP binding.IMPORTANCE The expression of several bacterial operons is controlled by regulated termination in the 5' untranslated region (5' UTR). Transcription Attenuation is defined as situations in which the binding of a regulatory molecule promotes transcription termination in the 5' UTR, with the default being transcription readthrough into the downstream genes. RNA polymerase pausing is thought to participate in several Attenuation Mechanisms by synchronizing the position of RNA polymerase with RNA folding and/or regulatory factor binding, although this has only been shown in a few instances. We found that NusA- and NusG-stimulated pausing participates in the Attenuation mechanism controlling the expression of the Bacillus subtilis trp operon by increasing the TRAP-dependent termination efficiency. The pause signal is organized in a modular fashion containing RNA hairpin, U-tract, and T-tract components.

  • nusa stimulated rna polymerase pausing and termination participates in the bacillus subtilis trp operon Attenuation mechanism in vitro
    Proceedings of the National Academy of Sciences of the United States of America, 2002
    Co-Authors: Alexander V. Yakhnin, Paul Babitzke
    Abstract:

    The trp RNA-binding Attenuation protein (TRAP) regulates expression of the Bacillus subtilis trpEDCFBA operon by transcription Attenuation and translation control Mechanisms. Both Mechanisms require the binding of tryptophan-activated TRAP to the 11 (G/U)AG-repeat segment in the trp leader transcript. To promote termination, TRAP must bind to the nascent RNA before the antiterminator structure forms. Because only 20 nucleotides separate the TRAP-binding site from the 3′ end of the antiterminator, TRAP has a short time frame to control this regulatory decision. Synchronization of factor binding and/or RNA folding with the RNA polymerase position is a major challenge in all Attenuation Mechanisms. Because RNA polymerase pausing allows this synchronization in many Attenuation Mechanisms, we performed experiments in vitro to determine whether pausing participates in the B. subtilis trp Attenuation mechanism. We identified two NusA-stimulated pause sites in the trp leader region. Formation of pause hairpins participates in pausing at both positions. The first pause occurred at the nucleotide just preceding the critical overlap between the alternative antiterminator and terminator structures. TRAP binding to transcripts containing preexisting pause complexes releases RNA polymerase, suggesting that pausing provides additional time for TRAP to bind and promote termination. The second pause is downstream from the trp leader termination point, raising the possibility that this pause event participates in the trpE translation control mechanism. NusA also increases the efficiency of termination in the trp leader region and shifts termination one nucleotide upstream. Finally, NusA-stimulated termination is cooperative, suggesting that binding of multiple NusA molecules influences termination.

Nathalie Vachiery - One of the best experts on this subject based on the ideXlab platform.

  • Comparative Transcriptome Profiling of Virulent and Attenuated Ehrlichia ruminantium Strains Highlighted Strong Regulation of map1- and Metabolism Related Genes
    Frontiers in Cellular and Infection Microbiology, 2018
    Co-Authors: Ludovic Pruneau, Kevin Lebrigand, Bernard Mari, Thierry Lefrancois, Damien Meyer, Nathalie Vachiery
    Abstract:

    The obligate intracellular pathogenic bacterium, Ehrlichia rurninantiurn, is the causal agent of heartwater, a fatal disease in ruminants transmitted by Amblyomrna ticks. So far, three strains have been attenuated by successive passages in mammalian cells. The attenuated strains have improved capacity for growth in vitro, whereas they induced limited clinical signs in vivo and conferred strong protection against homologous challenge. However, the Mechanisms of pathogenesis and Attenuation remain unknown. In order to improve knowledge of E. ruminantium pathogenesis, we performed a comparative transcriptomic analysis of two distant strains of E ruminantium, Gardel and Senegal, and their corresponding attenuated strains. Overall, our results showed an upregulation of gene expression encoding for the metabolism pathway in the attenuated strains compared to the virulent strains, which can probably be associated with higher in vitro replicative activity and a better fitness to the host cells. We also observed a significant differential expression of membrane protein-encoding genes between the virulent and attenuated strains. A major downregulation of map1-related genes was observed for the two attenuated strains, whereas upregulation of genes encoding for hypothetical membrane proteins was observed for the four strains. Moreover, CDS_05140, which encodes for a putative porin, displays the highest gene expression in both attenuated strains. For the attenuated strains, the significant downregulation of map1-related gene expression and upregulation of genes encoding other membrane proteins could be important in the implementation of efficient immune responses after vaccination with attenuated vaccines. Moreover, this study revealed an upregulation of gene expression for 8 genes encoding components of Type IV secretion system and 3 potential effectors, mainly in the virulent Gardel strain. Our transcriptomic study, supported by previous proteomic studies, provides and also confirms new information regarding the characterization of genes involved in E. ruminantium virulence and Attenuation Mechanisms.

  • Table_1_Comparative Transcriptome Profiling of Virulent and Attenuated Ehrlichia ruminantium Strains Highlighted Strong Regulation of map1- and Metabolism Related Genes.DOCX
    2018
    Co-Authors: Ludovic Pruneau, Kevin Lebrigand, Bernard Mari, Thierry Lefrancois, Damien F. Meyer, Nathalie Vachiery
    Abstract:

    The obligate intracellular pathogenic bacterium, Ehrlichia ruminantium, is the causal agent of heartwater, a fatal disease in ruminants transmitted by Amblyomma ticks. So far, three strains have been attenuated by successive passages in mammalian cells. The attenuated strains have improved capacity for growth in vitro, whereas they induced limited clinical signs in vivo and conferred strong protection against homologous challenge. However, the Mechanisms of pathogenesis and Attenuation remain unknown. In order to improve knowledge of E. ruminantium pathogenesis, we performed a comparative transcriptomic analysis of two distant strains of E. ruminantium, Gardel and Senegal, and their corresponding attenuated strains. Overall, our results showed an upregulation of gene expression encoding for the metabolism pathway in the attenuated strains compared to the virulent strains, which can probably be associated with higher in vitro replicative activity and a better fitness to the host cells. We also observed a significant differential expression of membrane protein-encoding genes between the virulent and attenuated strains. A major downregulation of map1-related genes was observed for the two attenuated strains, whereas upregulation of genes encoding for hypothetical membrane proteins was observed for the four strains. Moreover, CDS_05140, which encodes for a putative porin, displays the highest gene expression in both attenuated strains. For the attenuated strains, the significant downregulation of map1-related gene expression and upregulation of genes encoding other membrane proteins could be important in the implementation of efficient immune responses after vaccination with attenuated vaccines. Moreover, this study revealed an upregulation of gene expression for 8 genes encoding components of Type IV secretion system and 3 potential effectors, mainly in the virulent Gardel strain. Our transcriptomic study, supported by previous proteomic studies, provides and also confirms new information regarding the characterization of genes involved in E. ruminantium virulence and Attenuation Mechanisms.

Alexander V. Yakhnin - One of the best experts on this subject based on the ideXlab platform.

  • NusG-Dependent RNA Polymerase Pausing and Tylosin-Dependent Ribosome Stalling Are Required for Tylosin Resistance by Inducing 23S rRNA Methylation in Bacillus subtilis
    mBio, 2019
    Co-Authors: Helen Yakhnin, Alexander V. Yakhnin, Brandon L. Mouery, Zachary F. Mandell, Catherine Karbasiafshar, Mikhail Kashlev, Paul Babitzke
    Abstract:

    ABSTRACT Macrolide antibiotics bind to 23S rRNA within the peptide exit tunnel of the ribosome, causing the translating ribosome to stall when an appropriately positioned macrolide arrest motif is encountered in the nascent polypeptide. Tylosin is a macrolide antibiotic produced by Streptomyces fradiae. Resistance to tylosin in S. fradiae is conferred by methylation of 23S rRNA by TlrD and RlmAII. Here, we demonstrate that yxjB encodes RlmAII in Bacillus subtilis and that YxjB-specific methylation of 23S rRNA in the peptide exit tunnel confers tylosin resistance. Growth in the presence of subinhibitory concentrations of tylosin results in increased rRNA methylation and increased resistance. In the absence of tylosin, yxjB expression is repressed by transcription Attenuation and translation Attenuation Mechanisms. Tylosin-dependent induction of yxjB expression relieves these two repression Mechanisms. Induction requires tylosin-dependent ribosome stalling at an RYR arrest motif at the C terminus of a leader peptide encoded upstream of yxjB. Furthermore, NusG-dependent RNA polymerase pausing between the leader peptide and yxjB coding sequences is essential for tylosin-dependent induction. Pausing synchronizes the position of RNA polymerase with ribosome position such that the stalled ribosome prevents transcription termination and formation of an RNA structure that sequesters the yxjB ribosome binding site. On the basis of our results, we are renaming yxjB as tlrB. IMPORTANCE Antibiotic resistance is a growing health concern. Resistance Mechanisms have evolved that provide bacteria with a growth advantage in their natural habitat such as the soil. We determined that B. subtilis, a Gram-positive soil organism, has a mechanism of resistance to tylosin, a macrolide antibiotic commonly used in the meat industry. Tylosin induces expression of yxjB, which encodes an enzyme that methylates 23S rRNA. YxjB-dependent methylation of 23S rRNA confers tylosin resistance. NusG-dependent RNA polymerase pausing and tylosin-dependent ribosome stalling induce yxjB expression, and hence tylosin resistance, by preventing transcription termination upstream of the yxjB coding sequence and by preventing repression of yxjB translation.

  • modular organization of the nusa and nusg stimulated rna polymerase pause signal that participates in the bacillus subtilis trp operon Attenuation mechanism
    Journal of Bacteriology, 2017
    Co-Authors: Smarajit Mondal, Alexander V. Yakhnin, Paul Babitzke
    Abstract:

    The Bacillus subtilis trpEDCFBA operon is regulated by a transcription Attenuation mechanism in which tryptophan-activated TRAP binds to the nascent transcript and blocks the formation of an antiterminator structure such that the formation of an overlapping intrinsic terminator causes termination in the 5' untranslated region (5' UTR). In the absence of bound TRAP, the antiterminator forms and transcription continues into the trp genes. RNA polymerase pauses at positions U107 and U144 in the 5' UTR. The general transcription elongation factors NusA and NusG stimulate pausing at both positions. NusG-stimulated pausing at U144 requires sequence-specific contacts with a T tract in the nontemplate DNA (ntDNA) strand within the paused transcription bubble. Pausing at U144 participates in a trpE translation repression mechanism. Since U107 just precedes the critical overlap between the antiterminator and terminator structures, pausing at this position is thought to participate in Attenuation. Here we carried out in vitro pausing and termination experiments to identify components of the U107 pause signal and to determine whether pausing affects the termination efficiency in the 5' UTR. We determined that the U107 and U144 pause signals are organized in a modular fashion containing distinct RNA hairpin, U-tract, and T-tract components. NusA-stimulated pausing was affected by hairpin strength and the U-tract sequence, whereas NusG-stimulated pausing was affected by hairpin strength and the T-tract sequence. We also determined that pausing at U107 results in increased TRAP-dependent termination in the 5' UTR, implying that NusA- and NusG-stimulated pausing participates in the trp operon Attenuation mechanism by providing additional time for TRAP binding.IMPORTANCE The expression of several bacterial operons is controlled by regulated termination in the 5' untranslated region (5' UTR). Transcription Attenuation is defined as situations in which the binding of a regulatory molecule promotes transcription termination in the 5' UTR, with the default being transcription readthrough into the downstream genes. RNA polymerase pausing is thought to participate in several Attenuation Mechanisms by synchronizing the position of RNA polymerase with RNA folding and/or regulatory factor binding, although this has only been shown in a few instances. We found that NusA- and NusG-stimulated pausing participates in the Attenuation mechanism controlling the expression of the Bacillus subtilis trp operon by increasing the TRAP-dependent termination efficiency. The pause signal is organized in a modular fashion containing RNA hairpin, U-tract, and T-tract components.

  • nusa stimulated rna polymerase pausing and termination participates in the bacillus subtilis trp operon Attenuation mechanism in vitro
    Proceedings of the National Academy of Sciences of the United States of America, 2002
    Co-Authors: Alexander V. Yakhnin, Paul Babitzke
    Abstract:

    The trp RNA-binding Attenuation protein (TRAP) regulates expression of the Bacillus subtilis trpEDCFBA operon by transcription Attenuation and translation control Mechanisms. Both Mechanisms require the binding of tryptophan-activated TRAP to the 11 (G/U)AG-repeat segment in the trp leader transcript. To promote termination, TRAP must bind to the nascent RNA before the antiterminator structure forms. Because only 20 nucleotides separate the TRAP-binding site from the 3′ end of the antiterminator, TRAP has a short time frame to control this regulatory decision. Synchronization of factor binding and/or RNA folding with the RNA polymerase position is a major challenge in all Attenuation Mechanisms. Because RNA polymerase pausing allows this synchronization in many Attenuation Mechanisms, we performed experiments in vitro to determine whether pausing participates in the B. subtilis trp Attenuation mechanism. We identified two NusA-stimulated pause sites in the trp leader region. Formation of pause hairpins participates in pausing at both positions. The first pause occurred at the nucleotide just preceding the critical overlap between the alternative antiterminator and terminator structures. TRAP binding to transcripts containing preexisting pause complexes releases RNA polymerase, suggesting that pausing provides additional time for TRAP to bind and promote termination. The second pause is downstream from the trp leader termination point, raising the possibility that this pause event participates in the trpE translation control mechanism. NusA also increases the efficiency of termination in the trp leader region and shifts termination one nucleotide upstream. Finally, NusA-stimulated termination is cooperative, suggesting that binding of multiple NusA molecules influences termination.

Ivana Bilic - One of the best experts on this subject based on the ideXlab platform.

  • an alliance of gel based and gel free proteomic techniques displays substantial insight into the proteome of a virulent and an attenuated histomonas meleagridis strain
    Frontiers in Cellular and Infection Microbiology, 2018
    Co-Authors: Andreas Monoyios, Michael Hess, Karin Hummel, Katharina Nobauer, Martina Patzl, Sarah Schlosser, Ivana Bilic
    Abstract:

    The unicellular protozoan Histomonas meleagridis is notorious for being the causative agent of histomonosis, which can cause high mortality in turkeys and substantial production losses in chickens. The complete absence of commercially available curative strategies against the disease renders the devising of novel approaches a necessity. A fundamental step toward this objective is to understand the flagellate's virulence and Attenuation Mechanisms. For this purpose we have previously conducted a comparative proteomic analysis of an in vitro cultivated virulent and attenuated histomonad parasite using two-dimensional electrophoresis and MALDI-TOF/TOF. The current work aimed to substantially extend the knowledge of the flagellate's proteome by applying 2D-DIGE and sequential window acquisition of all theoretical mass spectra (SWATH) MS as tools on the two well-defined strains. In the gel-based experiments, 49 identified protein spots were found to be differentially expressed, of which 37 belonged to the in vitro cultivated virulent strain and 12 to the attenuated one. The most frequently identified proteins in the virulent strain take part in cytoskeleton formation, carbohydrate metabolism and adaptation to stress. However, post-translationally modified or truncated ubiquitous cellular proteins such as actin and GAPDH were identified as upregulated in multiple gel positions. This indicated their contribution to processes not related to cytoskeleton and carbohydrate metabolism, such as fibronectin or plasminogen binding. Proteins involved in cell division and cytoskeleton organization were frequently observed in the attenuated strain. The findings of the gel-based studies were supplemented by the gel-free SWATH MS analysis, which identified and quantified 42 significantly differentially regulated proteins. In this case proteins with peptidase activity, metabolic proteins and actin-regulating proteins were the most frequent findings in the virulent strain, while proteins involved in hydrogenosomal carbohydrate metabolism dominated the results in the attenuated one.

  • Table_2_An Alliance of Gel-Based and Gel-Free Proteomic Techniques Displays Substantial Insight Into the Proteome of a Virulent and an Attenuated Histomonas meleagridis Strain.DOCX
    2018
    Co-Authors: Andreas Monoyios, Michael Hess, Karin Hummel, Katharina Nobauer, Martina Patzl, Sarah Schlosser, Ivana Bilic
    Abstract:

    The unicellular protozoan Histomonas meleagridis is notorious for being the causative agent of histomonosis, which can cause high mortality in turkeys and substantial production losses in chickens. The complete absence of commercially available curative strategies against the disease renders the devising of novel approaches a necessity. A fundamental step toward this objective is to understand the flagellate's virulence and Attenuation Mechanisms. For this purpose we have previously conducted a comparative proteomic analysis of an in vitro cultivated virulent and attenuated histomonad parasite using two-dimensional electrophoresis and MALDI-TOF/TOF. The current work aimed to substantially extend the knowledge of the flagellate's proteome by applying 2D-DIGE and sequential window acquisition of all theoretical mass spectra (SWATH) MS as tools on the two well-defined strains. In the gel-based experiments, 49 identified protein spots were found to be differentially expressed, of which 37 belonged to the in vitro cultivated virulent strain and 12 to the attenuated one. The most frequently identified proteins in the virulent strain take part in cytoskeleton formation, carbohydrate metabolism and adaptation to stress. However, post-translationally modified or truncated ubiquitous cellular proteins such as actin and GAPDH were identified as upregulated in multiple gel positions. This indicated their contribution to processes not related to cytoskeleton and carbohydrate metabolism, such as fibronectin or plasminogen binding. Proteins involved in cell division and cytoskeleton organization were frequently observed in the attenuated strain. The findings of the gel-based studies were supplemented by the gel-free SWATH MS analysis, which identified and quantified 42 significantly differentially regulated proteins. In this case proteins with peptidase activity, metabolic proteins and actin-regulating proteins were the most frequent findings in the virulent strain, while proteins involved in hydrogenosomal carbohydrate metabolism dominated the results in the attenuated one.

  • Presentation_9_An Alliance of Gel-Based and Gel-Free Proteomic Techniques Displays Substantial Insight Into the Proteome of a Virulent and an Attenuated Histomonas meleagridis Strain.pptx
    2018
    Co-Authors: Andreas Monoyios, Michael Hess, Karin Hummel, Katharina Nobauer, Martina Patzl, Sarah Schlosser, Ivana Bilic
    Abstract:

    The unicellular protozoan Histomonas meleagridis is notorious for being the causative agent of histomonosis, which can cause high mortality in turkeys and substantial production losses in chickens. The complete absence of commercially available curative strategies against the disease renders the devising of novel approaches a necessity. A fundamental step toward this objective is to understand the flagellate's virulence and Attenuation Mechanisms. For this purpose we have previously conducted a comparative proteomic analysis of an in vitro cultivated virulent and attenuated histomonad parasite using two-dimensional electrophoresis and MALDI-TOF/TOF. The current work aimed to substantially extend the knowledge of the flagellate's proteome by applying 2D-DIGE and sequential window acquisition of all theoretical mass spectra (SWATH) MS as tools on the two well-defined strains. In the gel-based experiments, 49 identified protein spots were found to be differentially expressed, of which 37 belonged to the in vitro cultivated virulent strain and 12 to the attenuated one. The most frequently identified proteins in the virulent strain take part in cytoskeleton formation, carbohydrate metabolism and adaptation to stress. However, post-translationally modified or truncated ubiquitous cellular proteins such as actin and GAPDH were identified as upregulated in multiple gel positions. This indicated their contribution to processes not related to cytoskeleton and carbohydrate metabolism, such as fibronectin or plasminogen binding. Proteins involved in cell division and cytoskeleton organization were frequently observed in the attenuated strain. The findings of the gel-based studies were supplemented by the gel-free SWATH MS analysis, which identified and quantified 42 significantly differentially regulated proteins. In this case proteins with peptidase activity, metabolic proteins and actin-regulating proteins were the most frequent findings in the virulent strain, while proteins involved in hydrogenosomal carbohydrate metabolism dominated the results in the attenuated one.

Ludovic Pruneau - One of the best experts on this subject based on the ideXlab platform.

  • Comparative Transcriptome Profiling of Virulent and Attenuated Ehrlichia ruminantium Strains Highlighted Strong Regulation of map1- and Metabolism Related Genes
    Frontiers in Cellular and Infection Microbiology, 2018
    Co-Authors: Ludovic Pruneau, Kevin Lebrigand, Bernard Mari, Thierry Lefrancois, Damien Meyer, Nathalie Vachiery
    Abstract:

    The obligate intracellular pathogenic bacterium, Ehrlichia rurninantiurn, is the causal agent of heartwater, a fatal disease in ruminants transmitted by Amblyomrna ticks. So far, three strains have been attenuated by successive passages in mammalian cells. The attenuated strains have improved capacity for growth in vitro, whereas they induced limited clinical signs in vivo and conferred strong protection against homologous challenge. However, the Mechanisms of pathogenesis and Attenuation remain unknown. In order to improve knowledge of E. ruminantium pathogenesis, we performed a comparative transcriptomic analysis of two distant strains of E ruminantium, Gardel and Senegal, and their corresponding attenuated strains. Overall, our results showed an upregulation of gene expression encoding for the metabolism pathway in the attenuated strains compared to the virulent strains, which can probably be associated with higher in vitro replicative activity and a better fitness to the host cells. We also observed a significant differential expression of membrane protein-encoding genes between the virulent and attenuated strains. A major downregulation of map1-related genes was observed for the two attenuated strains, whereas upregulation of genes encoding for hypothetical membrane proteins was observed for the four strains. Moreover, CDS_05140, which encodes for a putative porin, displays the highest gene expression in both attenuated strains. For the attenuated strains, the significant downregulation of map1-related gene expression and upregulation of genes encoding other membrane proteins could be important in the implementation of efficient immune responses after vaccination with attenuated vaccines. Moreover, this study revealed an upregulation of gene expression for 8 genes encoding components of Type IV secretion system and 3 potential effectors, mainly in the virulent Gardel strain. Our transcriptomic study, supported by previous proteomic studies, provides and also confirms new information regarding the characterization of genes involved in E. ruminantium virulence and Attenuation Mechanisms.

  • Table_1_Comparative Transcriptome Profiling of Virulent and Attenuated Ehrlichia ruminantium Strains Highlighted Strong Regulation of map1- and Metabolism Related Genes.DOCX
    2018
    Co-Authors: Ludovic Pruneau, Kevin Lebrigand, Bernard Mari, Thierry Lefrancois, Damien F. Meyer, Nathalie Vachiery
    Abstract:

    The obligate intracellular pathogenic bacterium, Ehrlichia ruminantium, is the causal agent of heartwater, a fatal disease in ruminants transmitted by Amblyomma ticks. So far, three strains have been attenuated by successive passages in mammalian cells. The attenuated strains have improved capacity for growth in vitro, whereas they induced limited clinical signs in vivo and conferred strong protection against homologous challenge. However, the Mechanisms of pathogenesis and Attenuation remain unknown. In order to improve knowledge of E. ruminantium pathogenesis, we performed a comparative transcriptomic analysis of two distant strains of E. ruminantium, Gardel and Senegal, and their corresponding attenuated strains. Overall, our results showed an upregulation of gene expression encoding for the metabolism pathway in the attenuated strains compared to the virulent strains, which can probably be associated with higher in vitro replicative activity and a better fitness to the host cells. We also observed a significant differential expression of membrane protein-encoding genes between the virulent and attenuated strains. A major downregulation of map1-related genes was observed for the two attenuated strains, whereas upregulation of genes encoding for hypothetical membrane proteins was observed for the four strains. Moreover, CDS_05140, which encodes for a putative porin, displays the highest gene expression in both attenuated strains. For the attenuated strains, the significant downregulation of map1-related gene expression and upregulation of genes encoding other membrane proteins could be important in the implementation of efficient immune responses after vaccination with attenuated vaccines. Moreover, this study revealed an upregulation of gene expression for 8 genes encoding components of Type IV secretion system and 3 potential effectors, mainly in the virulent Gardel strain. Our transcriptomic study, supported by previous proteomic studies, provides and also confirms new information regarding the characterization of genes involved in E. ruminantium virulence and Attenuation Mechanisms.