Attractivity - Explore the Science & Experts | ideXlab


Scan Science and Technology

Contact Leading Edge Experts & Companies

Attractivity

The Experts below are selected from a list of 1286976 Experts worldwide ranked by ideXlab platform

Attractivity – Free Register to Access Experts & Abstracts

Fengde Chen – One of the best experts on this subject based on the ideXlab platform.

  • almost periodic solution of a discrete commensalism system
    Discrete Dynamics in Nature and Society, 2015
    Co-Authors: Fengde Chen

    Abstract:

    A nonautonomous discrete two-species Lotka-Volterra commensalism system with delays is considered in this paper. Based on the discrete comparison theorem, the permanence of the system is obtained. Then, by constructing a new discrete Lyapunov functional, a set of sufficient conditions which guarantee the system global Attractivity are obtained. If the coefficients are almost periodic, there exists an almost periodic solution and the almost periodic solution is globally attractive.

    Free Register to Access Article

  • global Attractivity of an integrodifferential model of mutualism
    Abstract and Applied Analysis, 2014
    Co-Authors: Xiangdong Xie, Fengde Chen, Kun Yang, Yalong Xue

    Abstract:

    Sufficient conditions are obtained for the global Attractivity of the following integrodifferential model of mutualism: , , where and , , are all positive constants. Consider , Consider and , Our result shows that conditions which ensure the permanence of the system are enough to ensure the global stability of the system. The result not only improves but also complements some existing ones.

    Free Register to Access Article

  • the permanence and global Attractivity of lotka volterra competition system with feedback controls
    Nonlinear Analysis-real World Applications, 2006
    Co-Authors: Fengde Chen

    Abstract:

    Abstract In this paper, we consider a nonautonomous Lotka–Volterra system with feedback controls. Some averaged conditions for the permanence and global Attractivity of this system are obtained. Our results generalized those obtained by Zhao et al. (Nonlinear Anal.: Real World Appl. 5 (2004) 265–276).

    Free Register to Access Article

Zheng Yan – One of the best experts on this subject based on the ideXlab platform.

  • Attractivity analysis of memristor based cellular neural networks with time varying delays
    IEEE Transactions on Neural Networks, 2014
    Co-Authors: Zhenyuan Guo, Jun Wang, Zheng Yan

    Abstract:

    This paper presents new theoretical results on the invariance and Attractivity of memristor-based cellular neural networks (MCNNs) with time-varying delays. First, sufficient conditions to assure the boundedness and global Attractivity of the networks are derived. Using state-space decomposition and some analytic techniques, it is shown that the number of equilibria located in the saturation regions of the piecewise-linear activation functions of an n-neuron MCNN with time-varying delays increases significantly from 2n to 22n2+n (22n2 times) compared with that without a memristor. In addition, sufficient conditions for the invariance and local or global Attractivity of equilibria or attractive sets in any designated region are derived. Finally, two illustrative examples are given to elaborate the characteristics of the results in detail.

    Free Register to Access Article

Zhenkun Huang – One of the best experts on this subject based on the ideXlab platform.

  • the existence and exponential Attractivity of κ almost periodic sequence solution of discrete time neural networks
    Nonlinear Dynamics, 2007
    Co-Authors: Zhenkun Huang, Xinghua Wang

    Abstract:

    In the present paper, several sufficient conditions are obtained for the existence and exponential Attractivity of a unique κ-almost periodic sequence solution of discrete time neural network. Our results generalize the corresponding results about almost periodic sequence solution in common sense. It is shown that discretization step κ affects the dynamical characteristics of discrete-time analogues of continuous time neural networks and exponential convergence is dependent on small discretization step size. Our results on exponential Attractivity of κ-almost periodic sequence solution can provide us with relevant estimates on how precise such networks can perform during real-time computations. Finally, computer simulations are performed in the end to show the feasibility of our results.

    Free Register to Access Article