Banara

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 360 Experts worldwide ranked by ideXlab platform

Mikolaj Owsianiak - One of the best experts on this subject based on the ideXlab platform.

  • comparative life cycle assessment of coffee jar lids made from biocomposites containing poly lactic acid and banana fiber
    Journal of Environmental Management, 2020
    Co-Authors: Joana L Rodriguez, Serena Fabbri, Carlos E Orrego, Mikolaj Owsianiak
    Abstract:

    Abstract Composites containing bio-based materials, like banana fiber and poly(lactic acid) (PLA), are potential food-packaging materials. We carried out an environmental life cycle assessment (LCA) of coffee jar lids made from high density polyethylene (HDPE), PLA, and banana fiber to assess their environmental performance. We considered differences in the type of blend (content of PLA and banana fiber in the composite), origin of the banana fiber feedstock (considered as either biowaste or as a co-product from banana production) and banana fiber pretreatment conditions (either no pretreatment or pretreatment using chemicals). Irrespective of the scenario, a lid made from 40% banana fiber and equal amounts of HDPE and PLA performed significantly better in all 18 impact categories when compared to a lid made from 100% PLA. By contrast, the same lid performed significantly better in 3 impact categories only (climate change, photochemical oxidant formation and fossil depletion) when compared to a lid made from 100% HDPE. Thus, environmental performance of the biocomposite strongly depends on which polymer base is replaced by the banana fiber in the composite. Replacing PLA with banana fiber is generally expected to bring environmental benefits.

  • comparative life cycle assessment of coffee jar lids made from biocomposites containing poly lactic acid and banana fiber
    Journal of Environmental Management, 2020
    Co-Authors: Joana L Rodriguez, Serena Fabbri, Carlos E Orrego, Mikolaj Owsianiak
    Abstract:

    Composites containing bio-based materials, like banana fiber and poly(lactic acid) (PLA), are potential food-packaging materials. We carried out an environmental life cycle assessment (LCA) of coffee jar lids made from high density polyethylene (HDPE), PLA, and banana fiber to assess their environmental performance. We considered differences in the type of blend (content of PLA and banana fiber in the composite), origin of the banana fiber feedstock (considered as either biowaste or as a co-product from banana production) and banana fiber pretreatment conditions (either no pretreatment or pretreatment using chemicals). Irrespective of the scenario, a lid made from 40% banana fiber and equal amounts of HDPE and PLA performed significantly better in all 18 impact categories when compared to a lid made from 100% PLA. By contrast, the same lid performed significantly better in 3 impact categories only (climate change, photochemical oxidant formation and fossil depletion) when compared to a lid made from 100% HDPE. Thus, environmental performance of the biocomposite strongly depends on which polymer base is replaced by the banana fiber in the composite. Replacing PLA with banana fiber is generally expected to bring environmental benefits.

Joana L Rodriguez - One of the best experts on this subject based on the ideXlab platform.

  • comparative life cycle assessment of coffee jar lids made from biocomposites containing poly lactic acid and banana fiber
    Journal of Environmental Management, 2020
    Co-Authors: Joana L Rodriguez, Serena Fabbri, Carlos E Orrego, Mikolaj Owsianiak
    Abstract:

    Abstract Composites containing bio-based materials, like banana fiber and poly(lactic acid) (PLA), are potential food-packaging materials. We carried out an environmental life cycle assessment (LCA) of coffee jar lids made from high density polyethylene (HDPE), PLA, and banana fiber to assess their environmental performance. We considered differences in the type of blend (content of PLA and banana fiber in the composite), origin of the banana fiber feedstock (considered as either biowaste or as a co-product from banana production) and banana fiber pretreatment conditions (either no pretreatment or pretreatment using chemicals). Irrespective of the scenario, a lid made from 40% banana fiber and equal amounts of HDPE and PLA performed significantly better in all 18 impact categories when compared to a lid made from 100% PLA. By contrast, the same lid performed significantly better in 3 impact categories only (climate change, photochemical oxidant formation and fossil depletion) when compared to a lid made from 100% HDPE. Thus, environmental performance of the biocomposite strongly depends on which polymer base is replaced by the banana fiber in the composite. Replacing PLA with banana fiber is generally expected to bring environmental benefits.

  • comparative life cycle assessment of coffee jar lids made from biocomposites containing poly lactic acid and banana fiber
    Journal of Environmental Management, 2020
    Co-Authors: Joana L Rodriguez, Serena Fabbri, Carlos E Orrego, Mikolaj Owsianiak
    Abstract:

    Composites containing bio-based materials, like banana fiber and poly(lactic acid) (PLA), are potential food-packaging materials. We carried out an environmental life cycle assessment (LCA) of coffee jar lids made from high density polyethylene (HDPE), PLA, and banana fiber to assess their environmental performance. We considered differences in the type of blend (content of PLA and banana fiber in the composite), origin of the banana fiber feedstock (considered as either biowaste or as a co-product from banana production) and banana fiber pretreatment conditions (either no pretreatment or pretreatment using chemicals). Irrespective of the scenario, a lid made from 40% banana fiber and equal amounts of HDPE and PLA performed significantly better in all 18 impact categories when compared to a lid made from 100% PLA. By contrast, the same lid performed significantly better in 3 impact categories only (climate change, photochemical oxidant formation and fossil depletion) when compared to a lid made from 100% HDPE. Thus, environmental performance of the biocomposite strongly depends on which polymer base is replaced by the banana fiber in the composite. Replacing PLA with banana fiber is generally expected to bring environmental benefits.

Serena Fabbri - One of the best experts on this subject based on the ideXlab platform.

  • comparative life cycle assessment of coffee jar lids made from biocomposites containing poly lactic acid and banana fiber
    Journal of Environmental Management, 2020
    Co-Authors: Joana L Rodriguez, Serena Fabbri, Carlos E Orrego, Mikolaj Owsianiak
    Abstract:

    Abstract Composites containing bio-based materials, like banana fiber and poly(lactic acid) (PLA), are potential food-packaging materials. We carried out an environmental life cycle assessment (LCA) of coffee jar lids made from high density polyethylene (HDPE), PLA, and banana fiber to assess their environmental performance. We considered differences in the type of blend (content of PLA and banana fiber in the composite), origin of the banana fiber feedstock (considered as either biowaste or as a co-product from banana production) and banana fiber pretreatment conditions (either no pretreatment or pretreatment using chemicals). Irrespective of the scenario, a lid made from 40% banana fiber and equal amounts of HDPE and PLA performed significantly better in all 18 impact categories when compared to a lid made from 100% PLA. By contrast, the same lid performed significantly better in 3 impact categories only (climate change, photochemical oxidant formation and fossil depletion) when compared to a lid made from 100% HDPE. Thus, environmental performance of the biocomposite strongly depends on which polymer base is replaced by the banana fiber in the composite. Replacing PLA with banana fiber is generally expected to bring environmental benefits.

  • comparative life cycle assessment of coffee jar lids made from biocomposites containing poly lactic acid and banana fiber
    Journal of Environmental Management, 2020
    Co-Authors: Joana L Rodriguez, Serena Fabbri, Carlos E Orrego, Mikolaj Owsianiak
    Abstract:

    Composites containing bio-based materials, like banana fiber and poly(lactic acid) (PLA), are potential food-packaging materials. We carried out an environmental life cycle assessment (LCA) of coffee jar lids made from high density polyethylene (HDPE), PLA, and banana fiber to assess their environmental performance. We considered differences in the type of blend (content of PLA and banana fiber in the composite), origin of the banana fiber feedstock (considered as either biowaste or as a co-product from banana production) and banana fiber pretreatment conditions (either no pretreatment or pretreatment using chemicals). Irrespective of the scenario, a lid made from 40% banana fiber and equal amounts of HDPE and PLA performed significantly better in all 18 impact categories when compared to a lid made from 100% PLA. By contrast, the same lid performed significantly better in 3 impact categories only (climate change, photochemical oxidant formation and fossil depletion) when compared to a lid made from 100% HDPE. Thus, environmental performance of the biocomposite strongly depends on which polymer base is replaced by the banana fiber in the composite. Replacing PLA with banana fiber is generally expected to bring environmental benefits.

Carlos E Orrego - One of the best experts on this subject based on the ideXlab platform.

  • comparative life cycle assessment of coffee jar lids made from biocomposites containing poly lactic acid and banana fiber
    Journal of Environmental Management, 2020
    Co-Authors: Joana L Rodriguez, Serena Fabbri, Carlos E Orrego, Mikolaj Owsianiak
    Abstract:

    Abstract Composites containing bio-based materials, like banana fiber and poly(lactic acid) (PLA), are potential food-packaging materials. We carried out an environmental life cycle assessment (LCA) of coffee jar lids made from high density polyethylene (HDPE), PLA, and banana fiber to assess their environmental performance. We considered differences in the type of blend (content of PLA and banana fiber in the composite), origin of the banana fiber feedstock (considered as either biowaste or as a co-product from banana production) and banana fiber pretreatment conditions (either no pretreatment or pretreatment using chemicals). Irrespective of the scenario, a lid made from 40% banana fiber and equal amounts of HDPE and PLA performed significantly better in all 18 impact categories when compared to a lid made from 100% PLA. By contrast, the same lid performed significantly better in 3 impact categories only (climate change, photochemical oxidant formation and fossil depletion) when compared to a lid made from 100% HDPE. Thus, environmental performance of the biocomposite strongly depends on which polymer base is replaced by the banana fiber in the composite. Replacing PLA with banana fiber is generally expected to bring environmental benefits.

  • comparative life cycle assessment of coffee jar lids made from biocomposites containing poly lactic acid and banana fiber
    Journal of Environmental Management, 2020
    Co-Authors: Joana L Rodriguez, Serena Fabbri, Carlos E Orrego, Mikolaj Owsianiak
    Abstract:

    Composites containing bio-based materials, like banana fiber and poly(lactic acid) (PLA), are potential food-packaging materials. We carried out an environmental life cycle assessment (LCA) of coffee jar lids made from high density polyethylene (HDPE), PLA, and banana fiber to assess their environmental performance. We considered differences in the type of blend (content of PLA and banana fiber in the composite), origin of the banana fiber feedstock (considered as either biowaste or as a co-product from banana production) and banana fiber pretreatment conditions (either no pretreatment or pretreatment using chemicals). Irrespective of the scenario, a lid made from 40% banana fiber and equal amounts of HDPE and PLA performed significantly better in all 18 impact categories when compared to a lid made from 100% PLA. By contrast, the same lid performed significantly better in 3 impact categories only (climate change, photochemical oxidant formation and fossil depletion) when compared to a lid made from 100% HDPE. Thus, environmental performance of the biocomposite strongly depends on which polymer base is replaced by the banana fiber in the composite. Replacing PLA with banana fiber is generally expected to bring environmental benefits.

Chahan Yeretzian - One of the best experts on this subject based on the ideXlab platform.

  • breath by breath analysis of banana aroma by proton transfer reaction mass spectrometry
    International Journal of Mass Spectrometry, 2003
    Co-Authors: D Mayr, Hugues Brevard, Werner Lindinger, T D Mark, Chahan Yeretzian
    Abstract:

    We report on the in vivo breath-by-breath analysis of volatiles released in the mouth during eating of ripe and unripe banana. The air exhaled through the nose, nosespace (NS), is directly introduced into a proton transfer reaction mass spectrometer and the time-intensity profiles of a series of volatiles are monitored on-line. These include isopentyl and isobutyl acetate, two characteristic odour compounds of ripe banana, and 2E-hexenal and hexanal, compounds typical of unripe banana. Comparing the NS with the headspace (HS) profile, two differences are outlined. First, NS concentrations of some compounds are increased, compared to the HS, while others are decreased. This indicates that the in-mouth situation has characteristics of its own—mastication, mixing/dilution with saliva, temperature and pH—which modify the aroma relative to an HS aroma. Second, we discuss the temporal evolution of the NS. While 2E-hexenal and hexanal steadily increase in the NS during mastication of unripe banana, no such evolution is observed in volatile organic compounds (VOCs) while eating ripe banana. Furthermore, ripe banana shows high VOC concentrations in the swallow breath in contrast to unripe banana.