Cable Diameter

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 3999 Experts worldwide ranked by ideXlab platform

Sean Lawless - One of the best experts on this subject based on the ideXlab platform.

  • design and development of a faceted secondary concentrator for a fiber optic hybrid solar lighting system
    Solar Energy, 2017
    Co-Authors: Ravi Gorthala, Meg Tidd, Sean Lawless
    Abstract:

    Abstract Fiber-optic solar hybrid lighting for mobile application such as military shelters in remote areas is appealing since high initial costs of such systems appear to be justified. This paper addresses the aspect of two-stage optics for a fiber-optic solar lighting system for the mobile application. More specifically, the focus of this paper is on the design and development of a second stage or secondary concentrator. Two-stage optics offers a distinct advantage of higher sun angle tolerance and hence a low-accuracy tracker can be used for the mobile application. The objective of this study was to design and develop a secondary concentrator that yielded a minimized peak illuminance on the fiber-optic inlet and achieved uniformity, to avoid localized heat damage to the fiber inlet. In addition, the overall goal was to increase the lumen output from the two-stage optics. Specifications for the design of the two-stage concentrator were: (1) the primary stage concentrator was a 10-in. Diameter Fresnel lens; (2) solar tolerance angle or the half-angle of acceptance was ±1.75°; (3) the fiber half-acceptance angle was ±40°; and (4) the fiber optic Cable Diameter was 0.5-in. Raytracing was used to determine the optimum geometry for the secondary lens. Among various geometries simulated included a conical secondary, a Compound Parabolic Concentrator (CPC), and a combination of conical and Compound Elliptical Concentrator (CEC). The analysis showed that a combination design comprising conical/CEC geometry was better than the conical and CPC geometries in terms of greatest overall light output and most reduced peak illuminance on the fiber optic Cable. Prototype secondary lenses based on the design were fabricated from acrylic and optical silicones. Testing of the prototype lenses revealed that acrylic secondary performed better than the silicone lenses in terms of the measured lumen output. Testing also showed that the fiber-optic Cable temperature was within the maximum operating temperature of acrylic and didn’t suffer any high temperature damage during the five month long outdoor testing.

Ravi Gorthala - One of the best experts on this subject based on the ideXlab platform.

  • design and development of a faceted secondary concentrator for a fiber optic hybrid solar lighting system
    Solar Energy, 2017
    Co-Authors: Ravi Gorthala, Meg Tidd, Sean Lawless
    Abstract:

    Abstract Fiber-optic solar hybrid lighting for mobile application such as military shelters in remote areas is appealing since high initial costs of such systems appear to be justified. This paper addresses the aspect of two-stage optics for a fiber-optic solar lighting system for the mobile application. More specifically, the focus of this paper is on the design and development of a second stage or secondary concentrator. Two-stage optics offers a distinct advantage of higher sun angle tolerance and hence a low-accuracy tracker can be used for the mobile application. The objective of this study was to design and develop a secondary concentrator that yielded a minimized peak illuminance on the fiber-optic inlet and achieved uniformity, to avoid localized heat damage to the fiber inlet. In addition, the overall goal was to increase the lumen output from the two-stage optics. Specifications for the design of the two-stage concentrator were: (1) the primary stage concentrator was a 10-in. Diameter Fresnel lens; (2) solar tolerance angle or the half-angle of acceptance was ±1.75°; (3) the fiber half-acceptance angle was ±40°; and (4) the fiber optic Cable Diameter was 0.5-in. Raytracing was used to determine the optimum geometry for the secondary lens. Among various geometries simulated included a conical secondary, a Compound Parabolic Concentrator (CPC), and a combination of conical and Compound Elliptical Concentrator (CEC). The analysis showed that a combination design comprising conical/CEC geometry was better than the conical and CPC geometries in terms of greatest overall light output and most reduced peak illuminance on the fiber optic Cable. Prototype secondary lenses based on the design were fabricated from acrylic and optical silicones. Testing of the prototype lenses revealed that acrylic secondary performed better than the silicone lenses in terms of the measured lumen output. Testing also showed that the fiber-optic Cable temperature was within the maximum operating temperature of acrylic and didn’t suffer any high temperature damage during the five month long outdoor testing.

Meg Tidd - One of the best experts on this subject based on the ideXlab platform.

  • design and development of a faceted secondary concentrator for a fiber optic hybrid solar lighting system
    Solar Energy, 2017
    Co-Authors: Ravi Gorthala, Meg Tidd, Sean Lawless
    Abstract:

    Abstract Fiber-optic solar hybrid lighting for mobile application such as military shelters in remote areas is appealing since high initial costs of such systems appear to be justified. This paper addresses the aspect of two-stage optics for a fiber-optic solar lighting system for the mobile application. More specifically, the focus of this paper is on the design and development of a second stage or secondary concentrator. Two-stage optics offers a distinct advantage of higher sun angle tolerance and hence a low-accuracy tracker can be used for the mobile application. The objective of this study was to design and develop a secondary concentrator that yielded a minimized peak illuminance on the fiber-optic inlet and achieved uniformity, to avoid localized heat damage to the fiber inlet. In addition, the overall goal was to increase the lumen output from the two-stage optics. Specifications for the design of the two-stage concentrator were: (1) the primary stage concentrator was a 10-in. Diameter Fresnel lens; (2) solar tolerance angle or the half-angle of acceptance was ±1.75°; (3) the fiber half-acceptance angle was ±40°; and (4) the fiber optic Cable Diameter was 0.5-in. Raytracing was used to determine the optimum geometry for the secondary lens. Among various geometries simulated included a conical secondary, a Compound Parabolic Concentrator (CPC), and a combination of conical and Compound Elliptical Concentrator (CEC). The analysis showed that a combination design comprising conical/CEC geometry was better than the conical and CPC geometries in terms of greatest overall light output and most reduced peak illuminance on the fiber optic Cable. Prototype secondary lenses based on the design were fabricated from acrylic and optical silicones. Testing of the prototype lenses revealed that acrylic secondary performed better than the silicone lenses in terms of the measured lumen output. Testing also showed that the fiber-optic Cable temperature was within the maximum operating temperature of acrylic and didn’t suffer any high temperature damage during the five month long outdoor testing.

Zoltan Gingl - One of the best experts on this subject based on the ideXlab platform.

  • johnson like noise kirchhoff loop based secure classical communicator characteristics for ranges of two to two thousand kilometers via model line
    Physics Letters A, 2008
    Co-Authors: Robert Mingesz, Zoltan Gingl, Laszlo B Kish
    Abstract:

    Abstract A pair of Kirchhoff-loop–Johnson(-like)–Noise communicators, which is able to work over variable ranges, was designed and built. Tests have been carried out on a model-line performance characteristics were obtained for ranges beyond the ranges of any known direct quantum communication channel and they indicate unrivalled signal fidelity and security performance of the exchanged raw key bits. This simple device has single-wire secure key generation and sharing rates of 0.1, 1, 10, and 100 bit/second for corresponding copper wire Diameters/ranges of 21 mm/2000 km, 7 mm/200 km, 2.3 mm/20 km, and 0.7 mm/2 km, respectively and it performs with 0.02% raw-bit error rate (99.98% fidelity). The raw-bit security of this practical system significantly outperforms raw-bit quantum security. Current injection breaking tests show zero bit eavesdropping ability without triggering the alarm signal, therefore no multiple measurements are needed to build an error statistics to detect the eavesdropping as in quantum communication. Wire resistance based breaking tests of Bergou–Scheuer–Yariv type give an upper limit of eavesdropped raw-bit ratio of 0.19% and this limit is inversely proportional to the sixth power of Cable Diameter. Hao's breaking method yields zero (below measurement resolution) eavesdropping information.

  • thermal noise informatics totally secure communication via a wire zero power communication and thermal noise driven computing
    arXiv: General Physics, 2007
    Co-Authors: Laszlo B Kish, Robert Mingesz, Zoltan Gingl
    Abstract:

    Very recently, it has been shown that Gaussian thermal noise and its artificial versions (Johnson-like noises) can be utilized as an information carrier with peculiar properties therefore it may be proper to call this topic Thermal Noise Informatics. Zero Power (Stealth) Communication, Thermal Noise Driven Computing, and Totally Secure Classical Communication are relevant examples. In this paper, while we will briefly describe the first and the second subjects, we shall focus on the third subject, the secure classical communication via wire. This way of secure telecommunication utilizes the properties of Johnson(-like) noise and those of a simple Kirchhoffs loop. The communicator is unconditionally secure at the conceptual (circuit theoretical) level and this property is (so far) unique in communication systems based on classical physics. The communicator is superior to quantum alternatives in all known aspects, except the need of using a wire. In the idealized system, the eavesdropper can extract zero bit of information without getting uncovered. The scheme is naturally protected against the man-in-the-middle attack. The communication can take place also via currently used power lines or phone (wire) lines and it is not only a point-to-point communication like quantum channels but network-ready. We report that a pair of Kirchhoff-Loop-Johnson(-like)-Noise communicators, which is able to work over variable ranges, was designed and built. Tests have been carried out on a model-line with ranges beyond the ranges of any known direct quantum communication channel and they indicate unrivalled signal fidelity and security performance. This simple device has single-wire secure key generation/sharing rates of 0.1, 1, 10, and 100 bit/second for copper wires with Diameters/ranges of 21 mm / 2000 km, 7 mm / 200 km, 2.3 mm / 20 km, and 0.7 mm / 2 km, respectively and it performs with 0.02% raw-bit error rate (99.98 % fidelity). The raw-bit security of this practical system significantly outperforms raw-bit quantum security. Current injection breaking tests show zero bit eavesdropping ability without setting on the alarm signal, therefore no multiple measurements are needed to build an error statistics to detect the eavesdropping as in quantum communication. Wire resistance based breaking tests of Bergou-Scheuer-Yariv type give an upper limit of eavesdropped raw bit ratio is 0.19 % and this limit is inversely proportional to the sixth power of Cable Diameter. Hao's breaking method yields zero (below measurement resolution) eavesdropping information.

Laszlo B Kish - One of the best experts on this subject based on the ideXlab platform.

  • johnson like noise kirchhoff loop based secure classical communicator characteristics for ranges of two to two thousand kilometers via model line
    Physics Letters A, 2008
    Co-Authors: Robert Mingesz, Zoltan Gingl, Laszlo B Kish
    Abstract:

    Abstract A pair of Kirchhoff-loop–Johnson(-like)–Noise communicators, which is able to work over variable ranges, was designed and built. Tests have been carried out on a model-line performance characteristics were obtained for ranges beyond the ranges of any known direct quantum communication channel and they indicate unrivalled signal fidelity and security performance of the exchanged raw key bits. This simple device has single-wire secure key generation and sharing rates of 0.1, 1, 10, and 100 bit/second for corresponding copper wire Diameters/ranges of 21 mm/2000 km, 7 mm/200 km, 2.3 mm/20 km, and 0.7 mm/2 km, respectively and it performs with 0.02% raw-bit error rate (99.98% fidelity). The raw-bit security of this practical system significantly outperforms raw-bit quantum security. Current injection breaking tests show zero bit eavesdropping ability without triggering the alarm signal, therefore no multiple measurements are needed to build an error statistics to detect the eavesdropping as in quantum communication. Wire resistance based breaking tests of Bergou–Scheuer–Yariv type give an upper limit of eavesdropped raw-bit ratio of 0.19% and this limit is inversely proportional to the sixth power of Cable Diameter. Hao's breaking method yields zero (below measurement resolution) eavesdropping information.

  • thermal noise informatics totally secure communication via a wire zero power communication and thermal noise driven computing
    arXiv: General Physics, 2007
    Co-Authors: Laszlo B Kish, Robert Mingesz, Zoltan Gingl
    Abstract:

    Very recently, it has been shown that Gaussian thermal noise and its artificial versions (Johnson-like noises) can be utilized as an information carrier with peculiar properties therefore it may be proper to call this topic Thermal Noise Informatics. Zero Power (Stealth) Communication, Thermal Noise Driven Computing, and Totally Secure Classical Communication are relevant examples. In this paper, while we will briefly describe the first and the second subjects, we shall focus on the third subject, the secure classical communication via wire. This way of secure telecommunication utilizes the properties of Johnson(-like) noise and those of a simple Kirchhoffs loop. The communicator is unconditionally secure at the conceptual (circuit theoretical) level and this property is (so far) unique in communication systems based on classical physics. The communicator is superior to quantum alternatives in all known aspects, except the need of using a wire. In the idealized system, the eavesdropper can extract zero bit of information without getting uncovered. The scheme is naturally protected against the man-in-the-middle attack. The communication can take place also via currently used power lines or phone (wire) lines and it is not only a point-to-point communication like quantum channels but network-ready. We report that a pair of Kirchhoff-Loop-Johnson(-like)-Noise communicators, which is able to work over variable ranges, was designed and built. Tests have been carried out on a model-line with ranges beyond the ranges of any known direct quantum communication channel and they indicate unrivalled signal fidelity and security performance. This simple device has single-wire secure key generation/sharing rates of 0.1, 1, 10, and 100 bit/second for copper wires with Diameters/ranges of 21 mm / 2000 km, 7 mm / 200 km, 2.3 mm / 20 km, and 0.7 mm / 2 km, respectively and it performs with 0.02% raw-bit error rate (99.98 % fidelity). The raw-bit security of this practical system significantly outperforms raw-bit quantum security. Current injection breaking tests show zero bit eavesdropping ability without setting on the alarm signal, therefore no multiple measurements are needed to build an error statistics to detect the eavesdropping as in quantum communication. Wire resistance based breaking tests of Bergou-Scheuer-Yariv type give an upper limit of eavesdropped raw bit ratio is 0.19 % and this limit is inversely proportional to the sixth power of Cable Diameter. Hao's breaking method yields zero (below measurement resolution) eavesdropping information.