Calcium Fluorides

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 8226 Experts worldwide ranked by ideXlab platform

Muhammad Shahzad Kamal - One of the best experts on this subject based on the ideXlab platform.

  • Sandstone Acidizing Using a Low-Reaction Acid System
    Journal of Energy Resources Technology-transactions of The Asme, 2020
    Co-Authors: Ibrahim Gomaa, Mohamed Mahmoud, Muhammad Shahzad Kamal
    Abstract:

    Abstract Sandstone acidizing is the process of removing the damage from sandstone reservoirs to restore the well productivity/injectivity to its original or expected rates. It differs from carbonate acidizing in which a substantial portion of the rock is dissolved. Stimulating sandstone with mud acid HF/HCl may cause many problems as sandstone is a clastic sedimentary rock that consists mainly of quartz, silica minerals, feldspars, clays, and minor quantities of zeolite and chlorites. When conventional mud acid reacts with rock some sensitive components of sandstone get cemented by silica, calcite, or iron oxides. This happens due to the different precipitation reactions that take place and form fluosilicates, Calcium Fluorides, silica-gel filming, and even colloidal silica-gel compounds. In this work, two chelating agents, hydroxyethylenediaminetetraacetic acid (HEDTA) and diethylenetriaminepentaacetic acid (DTPA), were used to stimulate Berea sandstone cores. Berea sandstone cores were scanned using the XRD to quantify their mineralogical composition. Different pore volumes of 0.6M HEDTA and 0.6M DTPA were used as a preflush followed by different concentrations of HF as a main flush. For the post-flush stage, ammonium chloride was used to flow back the cores and measure their permeability. The levels of Calcium, magnesium, aluminum, and iron ions in the effluent samples were measured using inductively coupled plasma (ICP) to assess the ability of each chemical to leach these different ions. Both HEDTA and DTPA showed a strong capability of chelating Calcium, iron, and magnesium ions from the sandstone cores while the amounts of chelated aluminum ions were quite small. Once starting the injection of the used chelating agents, the permeability of the core got enhanced gradually. The higher amounts of the chelating agents resulted in better the cores permeability. However, DTPA showed a better permeability enhancement than HEDTA due to its stronger ability to chelate the Calcium, iron, magnesium, and aluminum ions. Adding HF as the main flush initiates different reactions with the clay and silica minerals of the Berea sandstone cores. This caused a reduction in the permeability due to the formation of some precipitates such as fluosilicates and Calcium Fluorides. Therefore, it is recommended to use a very low concentration of HF while treating the Berea sandstone.

Ibrahim Gomaa - One of the best experts on this subject based on the ideXlab platform.

  • Sandstone Acidizing Using a Low-Reaction Acid System
    Journal of Energy Resources Technology-transactions of The Asme, 2020
    Co-Authors: Ibrahim Gomaa, Mohamed Mahmoud, Muhammad Shahzad Kamal
    Abstract:

    Abstract Sandstone acidizing is the process of removing the damage from sandstone reservoirs to restore the well productivity/injectivity to its original or expected rates. It differs from carbonate acidizing in which a substantial portion of the rock is dissolved. Stimulating sandstone with mud acid HF/HCl may cause many problems as sandstone is a clastic sedimentary rock that consists mainly of quartz, silica minerals, feldspars, clays, and minor quantities of zeolite and chlorites. When conventional mud acid reacts with rock some sensitive components of sandstone get cemented by silica, calcite, or iron oxides. This happens due to the different precipitation reactions that take place and form fluosilicates, Calcium Fluorides, silica-gel filming, and even colloidal silica-gel compounds. In this work, two chelating agents, hydroxyethylenediaminetetraacetic acid (HEDTA) and diethylenetriaminepentaacetic acid (DTPA), were used to stimulate Berea sandstone cores. Berea sandstone cores were scanned using the XRD to quantify their mineralogical composition. Different pore volumes of 0.6M HEDTA and 0.6M DTPA were used as a preflush followed by different concentrations of HF as a main flush. For the post-flush stage, ammonium chloride was used to flow back the cores and measure their permeability. The levels of Calcium, magnesium, aluminum, and iron ions in the effluent samples were measured using inductively coupled plasma (ICP) to assess the ability of each chemical to leach these different ions. Both HEDTA and DTPA showed a strong capability of chelating Calcium, iron, and magnesium ions from the sandstone cores while the amounts of chelated aluminum ions were quite small. Once starting the injection of the used chelating agents, the permeability of the core got enhanced gradually. The higher amounts of the chelating agents resulted in better the cores permeability. However, DTPA showed a better permeability enhancement than HEDTA due to its stronger ability to chelate the Calcium, iron, magnesium, and aluminum ions. Adding HF as the main flush initiates different reactions with the clay and silica minerals of the Berea sandstone cores. This caused a reduction in the permeability due to the formation of some precipitates such as fluosilicates and Calcium Fluorides. Therefore, it is recommended to use a very low concentration of HF while treating the Berea sandstone.

Dawid D. Smith - One of the best experts on this subject based on the ideXlab platform.

  • Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum
    2007
    Co-Authors: Leonard S. Aubrey, Christine A. Boyle, Eddie M. Williams, David H. Deyoung, Dawid D. Smith
    Abstract:

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and Calcium Fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and Calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and Calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of themore » selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.« less

Chi Feng - One of the best experts on this subject based on the ideXlab platform.

  • Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum
    'Office of Scientific and Technical Information (OSTI)', 2007
    Co-Authors: Aubrey, Leonard S., Boyle, Christine A., Williams, Eddie M., Deyoung, David H., Smith, Dawid D., Chi Feng
    Abstract:

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and Calcium Fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and Calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and Calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism

Mohamed Mahmoud - One of the best experts on this subject based on the ideXlab platform.

  • Sandstone Acidizing Using a Low-Reaction Acid System
    Journal of Energy Resources Technology-transactions of The Asme, 2020
    Co-Authors: Ibrahim Gomaa, Mohamed Mahmoud, Muhammad Shahzad Kamal
    Abstract:

    Abstract Sandstone acidizing is the process of removing the damage from sandstone reservoirs to restore the well productivity/injectivity to its original or expected rates. It differs from carbonate acidizing in which a substantial portion of the rock is dissolved. Stimulating sandstone with mud acid HF/HCl may cause many problems as sandstone is a clastic sedimentary rock that consists mainly of quartz, silica minerals, feldspars, clays, and minor quantities of zeolite and chlorites. When conventional mud acid reacts with rock some sensitive components of sandstone get cemented by silica, calcite, or iron oxides. This happens due to the different precipitation reactions that take place and form fluosilicates, Calcium Fluorides, silica-gel filming, and even colloidal silica-gel compounds. In this work, two chelating agents, hydroxyethylenediaminetetraacetic acid (HEDTA) and diethylenetriaminepentaacetic acid (DTPA), were used to stimulate Berea sandstone cores. Berea sandstone cores were scanned using the XRD to quantify their mineralogical composition. Different pore volumes of 0.6M HEDTA and 0.6M DTPA were used as a preflush followed by different concentrations of HF as a main flush. For the post-flush stage, ammonium chloride was used to flow back the cores and measure their permeability. The levels of Calcium, magnesium, aluminum, and iron ions in the effluent samples were measured using inductively coupled plasma (ICP) to assess the ability of each chemical to leach these different ions. Both HEDTA and DTPA showed a strong capability of chelating Calcium, iron, and magnesium ions from the sandstone cores while the amounts of chelated aluminum ions were quite small. Once starting the injection of the used chelating agents, the permeability of the core got enhanced gradually. The higher amounts of the chelating agents resulted in better the cores permeability. However, DTPA showed a better permeability enhancement than HEDTA due to its stronger ability to chelate the Calcium, iron, magnesium, and aluminum ions. Adding HF as the main flush initiates different reactions with the clay and silica minerals of the Berea sandstone cores. This caused a reduction in the permeability due to the formation of some precipitates such as fluosilicates and Calcium Fluorides. Therefore, it is recommended to use a very low concentration of HF while treating the Berea sandstone.