Chondrichthyes

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 2169 Experts worldwide ranked by ideXlab platform

Numa R. Hernández - One of the best experts on this subject based on the ideXlab platform.

José R. Rojas - One of the best experts on this subject based on the ideXlab platform.

Elizabeth A. Dinsdale - One of the best experts on this subject based on the ideXlab platform.

  • reducing data deficiencies preliminary elasmobranch fisheries surveys in india identify range extensions and large proportions of female and juvenile landings
    Frontiers in Marine Science, 2021
    Co-Authors: Shaili Johri, Michael P. Doane, Jitesh Solanki, Sam R. Fellows, Isabella Livingston, Anjani Tiwari, Anissa Busch, Isabel Y Moreno, Elizabeth A. Dinsdale
    Abstract:

    Chondrichthyes, an ancient and diverse class of vertebrates, are crucial to the health of marine ecosystems. Excessive demand for chondrichthyan products has increased fishing pressure, threatening ~30 % of species with extinction in recent decades. India is the second-largest shark landing nation globally and the province of Gujarat, is the largest contributor to its shark exports. Despite their significant contribution to global fish supplies, chondrichthyan fisheries in Gujarat remain understudied and many species, data deficient, posing challenges to the conservation of remaining populations in the region. Here, we report results from taxonomic assessment of elasmobranchs at four key landing sites in Gujarat. We identified thirty-one species of sharks and rays with a significant bias towards capture of females and juveniles by fisheries. Our data indicate presence of nursery areas for species such as Sphyrna lewini and Rhynchobatus laevis in the neritic areas off Gujarat. Further, we discovered extensions of the current distribution range for three species -Torpedo sinuspersici, Carcharhinus sorrah and the Rhinobatos punctifer. Taxonomic identities for a subset of species were confirmed using genomic analyses conducted with portable DNA sequencing tools. We present assessments for six data deficient species in the region – Rhinobatos annandalei, Rhinoptera jayakari, Maculabatis bineeshi, Pateobatis bleekeri, T. sinuspersici and Carcharhinus amboinensis. Last, we describe the extent of mechanization in fishing fleets and the proportion of elasmobranch catch across fishing ports in Gujarat. Our investigation underscores species with urgent conservation needs and reduces data deficiencies. These data will inform and pivot future scientific and conservation efforts to protect the most vulnerable Chondrichthyes in the Arabian Seas Region.

  • mitochondrial genome of the silvertip shark carcharhinus albimarginatus from the british indian ocean territory
    Mitochondrial DNA Part B, 2020
    Co-Authors: Shaili Johri, Elizabeth A. Dinsdale, Nicholas Dunn, Taylor K Chapple, David J Curnick, Vincent Savolainen, Barbara A Block
    Abstract:

    The Chagos archipelago in the British Indian Ocean Territory (BIOT) has been lacking in detailed genetic studies of its chondrichthyan populations. Chondrichthyes in Chagos continue to be endangere...

  • genome skimming with the minion hand held sequencer identifies cites listed shark species in india s exports market
    Scientific Reports, 2019
    Co-Authors: Shaili Johri, Jitesh Solanki, Vito Adrian Cantu, Sam R. Fellows, Isabel Moreno, Asit Vyas, Robert Edwards, Elizabeth A. Dinsdale
    Abstract:

    Chondrichthyes - sharks, rays, skates, and chimeras, are among the most threatened and data deficient vertebrate species. Global demand for shark and ray derived products, drives unregulated and exploitative fishing practices, which are in turn facilitated by the lack of ecological data required for effective conservation of these species. Here, we describe a Next Generation Sequencing method (using the MinION, a hand-held portable sequencing device from Oxford Nanopore Technologies), and analyses pipeline for molecular ecological studies in Chondrichthyes. Using this method, the complete mitochondrial genome and nuclear intergenic and protein-coding sequences were obtained by direct sequencing of genomic DNA obtained from shark fin tissue. Recovered loci include mitochondrial barcode sequences- Cytochrome oxidase I, NADH2, 16S rRNA and 12S rRNA- and nuclear genetic loci such as 5.8S rRNA, Internal Transcribed Spacer 2, and 28S rRNA regions, which are commonly used for taxonomic identification. Other loci recovered were the nuclear protein-coding genes for antithrombin or SerpinC, Immunoglobulin lambda light chain, Preprogehrelin, selenium binding protein 1(SBP1), Interleukin-1 beta (IL-1β) and Recombination-Activating Gene 1 (RAG1). The median coverage across all genetic loci was 20x and sequence accuracy was ≥99.8% compared to reference sequences. Analyses of the nuclear ITS2 region and the mitochondrial protein-encoding loci allowed accurate taxonomic identification of the shark specimen as Carcharhinus falciformis, a CITES Appendix II species. MinION sequencing provided 1,152,211 bp of new shark genome, increasing the number of sequenced shark genomes to five. Phylogenetic analyses using both mitochondrial and nuclear loci provided evidence that Prionace glauca is nested within Carcharhinus, suggesting the need for taxonomic reassignment of P. glauca. We increased genomic information about a shark species for ecological and population genetic studies, enabled accurate identification of the shark tissue for biodiversity indexing and resolved phylogenetic relationships among multiple taxa. The method was independent of amplification bias, and adaptable for field assessments of other Chondrichthyes and wildlife species in the future.

  • Taking Advantage of the Genomics Revolution for Monitoring and Conservation of Chondrichthyan Populations
    'MDPI AG', 2019
    Co-Authors: Shaili Johri, Michael P. Doane, Lauren Allen, Elizabeth A. Dinsdale
    Abstract:

    Chondrichthyes (sharks, rays, skates and chimaeras) are among the oldest extant predators and are vital to top-down regulation of oceanic ecosystems. They are an ecologically diverse group occupying a wide range of habitats and are thus, exploited by coastal, pelagic and deep-water fishing industries. Chondrichthyes are among the most data deficient vertebrate species groups making design and implementation of regulatory and conservation measures challenging. High-throughput sequencing technologies have significantly propelled ecological investigations and understanding of marine and terrestrial species’ populations, but there remains a paucity of NGS based research on chondrichthyan populations. We present a brief review of current methods to access genomic and metagenomic data from Chondrichthyes and discuss applications of these datasets to increase our understanding of chondrichthyan taxonomy, evolution, ecology and population structures. Last, we consider opportunities and challenges offered by genomic studies for conservation and management of chondrichthyan populations

  • ‘Genome skimming’ with the MinION hand-held sequencer identifies CITES-listed shark species in India’s exports market
    Nature Publishing Group, 2019
    Co-Authors: Shaili Johri, Jitesh Solanki, Vito Adrian Cantu, Sam R. Fellows, Robert A. Edwards, Isabel Moreno, Asit Vyas, Elizabeth A. Dinsdale
    Abstract:

    Abstract Chondrichthyes - sharks, rays, skates, and chimeras, are among the most threatened and data deficient vertebrate species. Global demand for shark and ray derived products, drives unregulated and exploitative fishing practices, which are in turn facilitated by the lack of ecological data required for effective conservation of these species. Here, we describe a Next Generation Sequencing method (using the MinION, a hand-held portable sequencing device from Oxford Nanopore Technologies), and analyses pipeline for molecular ecological studies in Chondrichthyes. Using this method, the complete mitochondrial genome and nuclear intergenic and protein-coding sequences were obtained by direct sequencing of genomic DNA obtained from shark fin tissue. Recovered loci include mitochondrial barcode sequences- Cytochrome oxidase I, NADH2, 16S rRNA and 12S rRNA- and nuclear genetic loci such as 5.8S rRNA, Internal Transcribed Spacer 2, and 28S rRNA regions, which are commonly used for taxonomic identification. Other loci recovered were the nuclear protein-coding genes for antithrombin or SerpinC, Immunoglobulin lambda light chain, Preprogehrelin, selenium binding protein 1(SBP1), Interleukin-1 beta (IL-1β) and Recombination-Activating Gene 1 (RAG1). The median coverage across all genetic loci was 20x and sequence accuracy was ≥99.8% compared to reference sequences. Analyses of the nuclear ITS2 region and the mitochondrial protein-encoding loci allowed accurate taxonomic identification of the shark specimen as Carcharhinus falciformis, a CITES Appendix II species. MinION sequencing provided 1,152,211 bp of new shark genome, increasing the number of sequenced shark genomes to five. Phylogenetic analyses using both mitochondrial and nuclear loci provided evidence that Prionace glauca is nested within Carcharhinus, suggesting the need for taxonomic reassignment of P. glauca. We increased genomic information about a shark species for ecological and population genetic studies, enabled accurate identification of the shark tissue for biodiversity indexing and resolved phylogenetic relationships among multiple taxa. The method was independent of amplification bias, and adaptable for field assessments of other Chondrichthyes and wildlife species in the future

Claudia I. Fuentes - One of the best experts on this subject based on the ideXlab platform.

Shaili Johri - One of the best experts on this subject based on the ideXlab platform.

  • reducing data deficiencies preliminary elasmobranch fisheries surveys in india identify range extensions and large proportions of female and juvenile landings
    Frontiers in Marine Science, 2021
    Co-Authors: Shaili Johri, Michael P. Doane, Jitesh Solanki, Sam R. Fellows, Isabella Livingston, Anjani Tiwari, Anissa Busch, Isabel Y Moreno, Elizabeth A. Dinsdale
    Abstract:

    Chondrichthyes, an ancient and diverse class of vertebrates, are crucial to the health of marine ecosystems. Excessive demand for chondrichthyan products has increased fishing pressure, threatening ~30 % of species with extinction in recent decades. India is the second-largest shark landing nation globally and the province of Gujarat, is the largest contributor to its shark exports. Despite their significant contribution to global fish supplies, chondrichthyan fisheries in Gujarat remain understudied and many species, data deficient, posing challenges to the conservation of remaining populations in the region. Here, we report results from taxonomic assessment of elasmobranchs at four key landing sites in Gujarat. We identified thirty-one species of sharks and rays with a significant bias towards capture of females and juveniles by fisheries. Our data indicate presence of nursery areas for species such as Sphyrna lewini and Rhynchobatus laevis in the neritic areas off Gujarat. Further, we discovered extensions of the current distribution range for three species -Torpedo sinuspersici, Carcharhinus sorrah and the Rhinobatos punctifer. Taxonomic identities for a subset of species were confirmed using genomic analyses conducted with portable DNA sequencing tools. We present assessments for six data deficient species in the region – Rhinobatos annandalei, Rhinoptera jayakari, Maculabatis bineeshi, Pateobatis bleekeri, T. sinuspersici and Carcharhinus amboinensis. Last, we describe the extent of mechanization in fishing fleets and the proportion of elasmobranch catch across fishing ports in Gujarat. Our investigation underscores species with urgent conservation needs and reduces data deficiencies. These data will inform and pivot future scientific and conservation efforts to protect the most vulnerable Chondrichthyes in the Arabian Seas Region.

  • mitochondrial genome of the silvertip shark carcharhinus albimarginatus from the british indian ocean territory
    Mitochondrial DNA Part B, 2020
    Co-Authors: Shaili Johri, Elizabeth A. Dinsdale, Nicholas Dunn, Taylor K Chapple, David J Curnick, Vincent Savolainen, Barbara A Block
    Abstract:

    The Chagos archipelago in the British Indian Ocean Territory (BIOT) has been lacking in detailed genetic studies of its chondrichthyan populations. Chondrichthyes in Chagos continue to be endangere...

  • genome skimming with the minion hand held sequencer identifies cites listed shark species in india s exports market
    Scientific Reports, 2019
    Co-Authors: Shaili Johri, Jitesh Solanki, Vito Adrian Cantu, Sam R. Fellows, Isabel Moreno, Asit Vyas, Robert Edwards, Elizabeth A. Dinsdale
    Abstract:

    Chondrichthyes - sharks, rays, skates, and chimeras, are among the most threatened and data deficient vertebrate species. Global demand for shark and ray derived products, drives unregulated and exploitative fishing practices, which are in turn facilitated by the lack of ecological data required for effective conservation of these species. Here, we describe a Next Generation Sequencing method (using the MinION, a hand-held portable sequencing device from Oxford Nanopore Technologies), and analyses pipeline for molecular ecological studies in Chondrichthyes. Using this method, the complete mitochondrial genome and nuclear intergenic and protein-coding sequences were obtained by direct sequencing of genomic DNA obtained from shark fin tissue. Recovered loci include mitochondrial barcode sequences- Cytochrome oxidase I, NADH2, 16S rRNA and 12S rRNA- and nuclear genetic loci such as 5.8S rRNA, Internal Transcribed Spacer 2, and 28S rRNA regions, which are commonly used for taxonomic identification. Other loci recovered were the nuclear protein-coding genes for antithrombin or SerpinC, Immunoglobulin lambda light chain, Preprogehrelin, selenium binding protein 1(SBP1), Interleukin-1 beta (IL-1β) and Recombination-Activating Gene 1 (RAG1). The median coverage across all genetic loci was 20x and sequence accuracy was ≥99.8% compared to reference sequences. Analyses of the nuclear ITS2 region and the mitochondrial protein-encoding loci allowed accurate taxonomic identification of the shark specimen as Carcharhinus falciformis, a CITES Appendix II species. MinION sequencing provided 1,152,211 bp of new shark genome, increasing the number of sequenced shark genomes to five. Phylogenetic analyses using both mitochondrial and nuclear loci provided evidence that Prionace glauca is nested within Carcharhinus, suggesting the need for taxonomic reassignment of P. glauca. We increased genomic information about a shark species for ecological and population genetic studies, enabled accurate identification of the shark tissue for biodiversity indexing and resolved phylogenetic relationships among multiple taxa. The method was independent of amplification bias, and adaptable for field assessments of other Chondrichthyes and wildlife species in the future.

  • Taking Advantage of the Genomics Revolution for Monitoring and Conservation of Chondrichthyan Populations
    'MDPI AG', 2019
    Co-Authors: Shaili Johri, Michael P. Doane, Lauren Allen, Elizabeth A. Dinsdale
    Abstract:

    Chondrichthyes (sharks, rays, skates and chimaeras) are among the oldest extant predators and are vital to top-down regulation of oceanic ecosystems. They are an ecologically diverse group occupying a wide range of habitats and are thus, exploited by coastal, pelagic and deep-water fishing industries. Chondrichthyes are among the most data deficient vertebrate species groups making design and implementation of regulatory and conservation measures challenging. High-throughput sequencing technologies have significantly propelled ecological investigations and understanding of marine and terrestrial species’ populations, but there remains a paucity of NGS based research on chondrichthyan populations. We present a brief review of current methods to access genomic and metagenomic data from Chondrichthyes and discuss applications of these datasets to increase our understanding of chondrichthyan taxonomy, evolution, ecology and population structures. Last, we consider opportunities and challenges offered by genomic studies for conservation and management of chondrichthyan populations

  • ‘Genome skimming’ with the MinION hand-held sequencer identifies CITES-listed shark species in India’s exports market
    Nature Publishing Group, 2019
    Co-Authors: Shaili Johri, Jitesh Solanki, Vito Adrian Cantu, Sam R. Fellows, Robert A. Edwards, Isabel Moreno, Asit Vyas, Elizabeth A. Dinsdale
    Abstract:

    Abstract Chondrichthyes - sharks, rays, skates, and chimeras, are among the most threatened and data deficient vertebrate species. Global demand for shark and ray derived products, drives unregulated and exploitative fishing practices, which are in turn facilitated by the lack of ecological data required for effective conservation of these species. Here, we describe a Next Generation Sequencing method (using the MinION, a hand-held portable sequencing device from Oxford Nanopore Technologies), and analyses pipeline for molecular ecological studies in Chondrichthyes. Using this method, the complete mitochondrial genome and nuclear intergenic and protein-coding sequences were obtained by direct sequencing of genomic DNA obtained from shark fin tissue. Recovered loci include mitochondrial barcode sequences- Cytochrome oxidase I, NADH2, 16S rRNA and 12S rRNA- and nuclear genetic loci such as 5.8S rRNA, Internal Transcribed Spacer 2, and 28S rRNA regions, which are commonly used for taxonomic identification. Other loci recovered were the nuclear protein-coding genes for antithrombin or SerpinC, Immunoglobulin lambda light chain, Preprogehrelin, selenium binding protein 1(SBP1), Interleukin-1 beta (IL-1β) and Recombination-Activating Gene 1 (RAG1). The median coverage across all genetic loci was 20x and sequence accuracy was ≥99.8% compared to reference sequences. Analyses of the nuclear ITS2 region and the mitochondrial protein-encoding loci allowed accurate taxonomic identification of the shark specimen as Carcharhinus falciformis, a CITES Appendix II species. MinION sequencing provided 1,152,211 bp of new shark genome, increasing the number of sequenced shark genomes to five. Phylogenetic analyses using both mitochondrial and nuclear loci provided evidence that Prionace glauca is nested within Carcharhinus, suggesting the need for taxonomic reassignment of P. glauca. We increased genomic information about a shark species for ecological and population genetic studies, enabled accurate identification of the shark tissue for biodiversity indexing and resolved phylogenetic relationships among multiple taxa. The method was independent of amplification bias, and adaptable for field assessments of other Chondrichthyes and wildlife species in the future