Co-Localization

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 6293763 Experts worldwide ranked by ideXlab platform

Francesco Osculati - One of the best experts on this subject based on the ideXlab platform.

  • ganglion cells and topographically related nerves in the vallate papilla von ebner gland complex
    Journal of Histochemistry and Cytochemistry, 2002
    Co-Authors: Andrea Sbarbati, Flavia Merigo, Paolo Bernardi, Caterina Crescimanno, Donatella Benati, Francesco Osculati
    Abstract:

    SUMMARY Ganglion cells and topographically related nerves in the vallate papilla/von Ebner gland complex were investigated in rat tongue by cytochemical, immunocytochemical, and ultrastructural methods to evaluate the possible presence of different neuronal subpopulations. Immunostaining for neurofilaments and protein gene product 9.5 revealed ganglionic cell bodies and nerve fibers. A large part of the neurons were positive at immunostaining for neuronal nitric oxide synthase (NOS), vesicular acetylcholine transporter (VAChT), or vasoactive intestinal peptide (VIP). A small subset of nerve fibers revealed immunoreactivity for cholecystokinin. Axons traveling under the lingual epithelium were evidenced by their content of calcitonin gene-related peptide (CGRP) or substance P (SP). Cell bodies positive for SP or CGRP were not detected. Using methods of Co-Localization, three different neuronal classes were detected. The main population was composed of AChE/NADPH-diaphorase (NADPHd)-positive cells. Small groups of acetylcholine esterase (AChE)-positive/NADPHd-negative cells were visible. Isolated neurons were AChE-negative/ NADPHd-positive. The results of Co-Localization experiments for VAChT/NOS were consistent with those obtained by cytochemical Co-Localization of AChE and NADPHd. Experiments of Co-Localization for peptidergic and nitrergic structures revealed CGRP- and SP-immunoreactive fibers in the vallate papilla/von Ebner gland ganglion. In conclusion, the results demonstrated in the VP/VEG complex peptidergic, cholinergic, and nitrergic neurons. The presence of different neuronal subclasses suggests that a certain degree of functional

  • Ganglion cells and topographically related nerves in the vallate papilla/ von Ebner gland complex
    The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society, 2002
    Co-Authors: Andrea Sbarbati, Flavia Merigo, Paolo Bernardi, Caterina Crescimanno, Donatella Benati, Francesco Osculati
    Abstract:

    Ganglion cells and topographically related nerves in the vallate papilla/von Ebner gland complex were investigated in rat tongue by cytochemical, immunocytochemical, and ultrastructural methods to evaluate the possible presence of different neuronal subpopulations. Immunostaining for neurofilaments and protein gene product 9.5 revealed ganglionic cell bodies and nerve fibers. A large part of the neurons were positive at immunostaining for neuronal nitric oxide synthase (NOS), vesicular acetylcholine transporter (VAChT), or vasoactive intestinal peptide (VIP). A small subset of nerve fibers revealed immunoreactivity for cholecystokinin. Axons traveling under the lingual epithelium were evidenced by their content of calcitonin gene-related peptide (CGRP) or substance P (SP). Cell bodies positive for SP or CGRP were not detected. Using methods of Co-Localization, three different neuronal classes were detected. The main population was composed of AChE/NADPH-diaphorase (NADPHd)-positive cells. Small groups of acetylcholine esterase (AChE)-positive/NADPHd-negative cells were visible. Isolated neurons were AChE-negative/NADPHd-positive. The results of Co-Localization experiments for VAChT/NOS were consistent with those obtained by cytochemical Co-Localization of AChE and NADPHd. Experiments of Co-Localization for peptidergic and nitrergic structures revealed CGRP- and SP-immunoreactive fibers in the vallate papilla/von Ebner gland ganglion. In conclusion, the results demonstrated in the VP/VEG complex peptidergic, cholinergic, and nitrergic neurons. The presence of different neuronal subclasses suggests that a certain degree of functional specialization may exist.

Andrea Sbarbati - One of the best experts on this subject based on the ideXlab platform.

  • ganglion cells and topographically related nerves in the vallate papilla von ebner gland complex
    Journal of Histochemistry and Cytochemistry, 2002
    Co-Authors: Andrea Sbarbati, Flavia Merigo, Paolo Bernardi, Caterina Crescimanno, Donatella Benati, Francesco Osculati
    Abstract:

    SUMMARY Ganglion cells and topographically related nerves in the vallate papilla/von Ebner gland complex were investigated in rat tongue by cytochemical, immunocytochemical, and ultrastructural methods to evaluate the possible presence of different neuronal subpopulations. Immunostaining for neurofilaments and protein gene product 9.5 revealed ganglionic cell bodies and nerve fibers. A large part of the neurons were positive at immunostaining for neuronal nitric oxide synthase (NOS), vesicular acetylcholine transporter (VAChT), or vasoactive intestinal peptide (VIP). A small subset of nerve fibers revealed immunoreactivity for cholecystokinin. Axons traveling under the lingual epithelium were evidenced by their content of calcitonin gene-related peptide (CGRP) or substance P (SP). Cell bodies positive for SP or CGRP were not detected. Using methods of Co-Localization, three different neuronal classes were detected. The main population was composed of AChE/NADPH-diaphorase (NADPHd)-positive cells. Small groups of acetylcholine esterase (AChE)-positive/NADPHd-negative cells were visible. Isolated neurons were AChE-negative/ NADPHd-positive. The results of Co-Localization experiments for VAChT/NOS were consistent with those obtained by cytochemical Co-Localization of AChE and NADPHd. Experiments of Co-Localization for peptidergic and nitrergic structures revealed CGRP- and SP-immunoreactive fibers in the vallate papilla/von Ebner gland ganglion. In conclusion, the results demonstrated in the VP/VEG complex peptidergic, cholinergic, and nitrergic neurons. The presence of different neuronal subclasses suggests that a certain degree of functional

  • Ganglion cells and topographically related nerves in the vallate papilla/ von Ebner gland complex
    The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society, 2002
    Co-Authors: Andrea Sbarbati, Flavia Merigo, Paolo Bernardi, Caterina Crescimanno, Donatella Benati, Francesco Osculati
    Abstract:

    Ganglion cells and topographically related nerves in the vallate papilla/von Ebner gland complex were investigated in rat tongue by cytochemical, immunocytochemical, and ultrastructural methods to evaluate the possible presence of different neuronal subpopulations. Immunostaining for neurofilaments and protein gene product 9.5 revealed ganglionic cell bodies and nerve fibers. A large part of the neurons were positive at immunostaining for neuronal nitric oxide synthase (NOS), vesicular acetylcholine transporter (VAChT), or vasoactive intestinal peptide (VIP). A small subset of nerve fibers revealed immunoreactivity for cholecystokinin. Axons traveling under the lingual epithelium were evidenced by their content of calcitonin gene-related peptide (CGRP) or substance P (SP). Cell bodies positive for SP or CGRP were not detected. Using methods of Co-Localization, three different neuronal classes were detected. The main population was composed of AChE/NADPH-diaphorase (NADPHd)-positive cells. Small groups of acetylcholine esterase (AChE)-positive/NADPHd-negative cells were visible. Isolated neurons were AChE-negative/NADPHd-positive. The results of Co-Localization experiments for VAChT/NOS were consistent with those obtained by cytochemical Co-Localization of AChE and NADPHd. Experiments of Co-Localization for peptidergic and nitrergic structures revealed CGRP- and SP-immunoreactive fibers in the vallate papilla/von Ebner gland ganglion. In conclusion, the results demonstrated in the VP/VEG complex peptidergic, cholinergic, and nitrergic neurons. The presence of different neuronal subclasses suggests that a certain degree of functional specialization may exist.

Pontus Aspenstrom - One of the best experts on this subject based on the ideXlab platform.

  • nanoscale localization of proteins within focal adhesions indicates discrete functional assemblies with selective force dependence
    FEBS Journal, 2018
    Co-Authors: Lei Xu, Laura J Braun, Daniel Ronnlund, Jerker Widengren, Pontus Aspenstrom
    Abstract:

    : Focal adhesions (FAs) are subcellular regions at the micrometer scale that link the cell to the surrounding microenvironment and control vital cell functions. However, the spatial architecture of FAs remains unclear at the nanometer scale. We used two-color and three-color super-resolution stimulated emission depletion microscopy to determine the spatial distributions and Co-Localization of endogenous FA components in fibroblasts. Our data indicate that adhesion proteins inside, but not outside, FAs are organized into nanometer size units of multi-protein assemblies. The loss of contractile force reduced the nanoscale Co-Localization between different types of proteins, while it increased this Co-Localization between markers of the same type. This suggests that actomyosin-dependent force exerts a nonrandom, specific, control of the localization of adhesion proteins within cell-matrix adhesions. These observations are consistent with the possibility that proteins in cell-matrix adhesions are assembled in nanoscale particles, and that force regulates the localization of the proteins therein in a protein-specific manner. This detailed knowledge of how the organization of FA components at the nanometer scale is linked to the capacity of the cells to generate contractile forces expands our understanding of cell adhesion in health and disease.

  • Nanoscale localization of proteins within focal adhesions indicates discrete functional assemblies with selective force‐dependence
    FEBS Journal, 2018
    Co-Authors: Lei Xu, Laura J Braun, Daniel Ronnlund, Jerker Widengren, Pontus Aspenstrom
    Abstract:

    : Focal adhesions (FAs) are subcellular regions at the micrometer scale that link the cell to the surrounding microenvironment and control vital cell functions. However, the spatial architecture of FAs remains unclear at the nanometer scale. We used two-color and three-color super-resolution stimulated emission depletion microscopy to determine the spatial distributions and Co-Localization of endogenous FA components in fibroblasts. Our data indicate that adhesion proteins inside, but not outside, FAs are organized into nanometer size units of multi-protein assemblies. The loss of contractile force reduced the nanoscale Co-Localization between different types of proteins, while it increased this Co-Localization between markers of the same type. This suggests that actomyosin-dependent force exerts a nonrandom, specific, control of the localization of adhesion proteins within cell-matrix adhesions. These observations are consistent with the possibility that proteins in cell-matrix adhesions are assembled in nanoscale particles, and that force regulates the localization of the proteins therein in a protein-specific manner. This detailed knowledge of how the organization of FA components at the nanometer scale is linked to the capacity of the cells to generate contractile forces expands our understanding of cell adhesion in health and disease.

Caterina Crescimanno - One of the best experts on this subject based on the ideXlab platform.

  • ganglion cells and topographically related nerves in the vallate papilla von ebner gland complex
    Journal of Histochemistry and Cytochemistry, 2002
    Co-Authors: Andrea Sbarbati, Flavia Merigo, Paolo Bernardi, Caterina Crescimanno, Donatella Benati, Francesco Osculati
    Abstract:

    SUMMARY Ganglion cells and topographically related nerves in the vallate papilla/von Ebner gland complex were investigated in rat tongue by cytochemical, immunocytochemical, and ultrastructural methods to evaluate the possible presence of different neuronal subpopulations. Immunostaining for neurofilaments and protein gene product 9.5 revealed ganglionic cell bodies and nerve fibers. A large part of the neurons were positive at immunostaining for neuronal nitric oxide synthase (NOS), vesicular acetylcholine transporter (VAChT), or vasoactive intestinal peptide (VIP). A small subset of nerve fibers revealed immunoreactivity for cholecystokinin. Axons traveling under the lingual epithelium were evidenced by their content of calcitonin gene-related peptide (CGRP) or substance P (SP). Cell bodies positive for SP or CGRP were not detected. Using methods of Co-Localization, three different neuronal classes were detected. The main population was composed of AChE/NADPH-diaphorase (NADPHd)-positive cells. Small groups of acetylcholine esterase (AChE)-positive/NADPHd-negative cells were visible. Isolated neurons were AChE-negative/ NADPHd-positive. The results of Co-Localization experiments for VAChT/NOS were consistent with those obtained by cytochemical Co-Localization of AChE and NADPHd. Experiments of Co-Localization for peptidergic and nitrergic structures revealed CGRP- and SP-immunoreactive fibers in the vallate papilla/von Ebner gland ganglion. In conclusion, the results demonstrated in the VP/VEG complex peptidergic, cholinergic, and nitrergic neurons. The presence of different neuronal subclasses suggests that a certain degree of functional

  • Ganglion cells and topographically related nerves in the vallate papilla/ von Ebner gland complex
    The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society, 2002
    Co-Authors: Andrea Sbarbati, Flavia Merigo, Paolo Bernardi, Caterina Crescimanno, Donatella Benati, Francesco Osculati
    Abstract:

    Ganglion cells and topographically related nerves in the vallate papilla/von Ebner gland complex were investigated in rat tongue by cytochemical, immunocytochemical, and ultrastructural methods to evaluate the possible presence of different neuronal subpopulations. Immunostaining for neurofilaments and protein gene product 9.5 revealed ganglionic cell bodies and nerve fibers. A large part of the neurons were positive at immunostaining for neuronal nitric oxide synthase (NOS), vesicular acetylcholine transporter (VAChT), or vasoactive intestinal peptide (VIP). A small subset of nerve fibers revealed immunoreactivity for cholecystokinin. Axons traveling under the lingual epithelium were evidenced by their content of calcitonin gene-related peptide (CGRP) or substance P (SP). Cell bodies positive for SP or CGRP were not detected. Using methods of Co-Localization, three different neuronal classes were detected. The main population was composed of AChE/NADPH-diaphorase (NADPHd)-positive cells. Small groups of acetylcholine esterase (AChE)-positive/NADPHd-negative cells were visible. Isolated neurons were AChE-negative/NADPHd-positive. The results of Co-Localization experiments for VAChT/NOS were consistent with those obtained by cytochemical Co-Localization of AChE and NADPHd. Experiments of Co-Localization for peptidergic and nitrergic structures revealed CGRP- and SP-immunoreactive fibers in the vallate papilla/von Ebner gland ganglion. In conclusion, the results demonstrated in the VP/VEG complex peptidergic, cholinergic, and nitrergic neurons. The presence of different neuronal subclasses suggests that a certain degree of functional specialization may exist.

Paolo Bernardi - One of the best experts on this subject based on the ideXlab platform.

  • ganglion cells and topographically related nerves in the vallate papilla von ebner gland complex
    Journal of Histochemistry and Cytochemistry, 2002
    Co-Authors: Andrea Sbarbati, Flavia Merigo, Paolo Bernardi, Caterina Crescimanno, Donatella Benati, Francesco Osculati
    Abstract:

    SUMMARY Ganglion cells and topographically related nerves in the vallate papilla/von Ebner gland complex were investigated in rat tongue by cytochemical, immunocytochemical, and ultrastructural methods to evaluate the possible presence of different neuronal subpopulations. Immunostaining for neurofilaments and protein gene product 9.5 revealed ganglionic cell bodies and nerve fibers. A large part of the neurons were positive at immunostaining for neuronal nitric oxide synthase (NOS), vesicular acetylcholine transporter (VAChT), or vasoactive intestinal peptide (VIP). A small subset of nerve fibers revealed immunoreactivity for cholecystokinin. Axons traveling under the lingual epithelium were evidenced by their content of calcitonin gene-related peptide (CGRP) or substance P (SP). Cell bodies positive for SP or CGRP were not detected. Using methods of Co-Localization, three different neuronal classes were detected. The main population was composed of AChE/NADPH-diaphorase (NADPHd)-positive cells. Small groups of acetylcholine esterase (AChE)-positive/NADPHd-negative cells were visible. Isolated neurons were AChE-negative/ NADPHd-positive. The results of Co-Localization experiments for VAChT/NOS were consistent with those obtained by cytochemical Co-Localization of AChE and NADPHd. Experiments of Co-Localization for peptidergic and nitrergic structures revealed CGRP- and SP-immunoreactive fibers in the vallate papilla/von Ebner gland ganglion. In conclusion, the results demonstrated in the VP/VEG complex peptidergic, cholinergic, and nitrergic neurons. The presence of different neuronal subclasses suggests that a certain degree of functional

  • Ganglion cells and topographically related nerves in the vallate papilla/ von Ebner gland complex
    The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society, 2002
    Co-Authors: Andrea Sbarbati, Flavia Merigo, Paolo Bernardi, Caterina Crescimanno, Donatella Benati, Francesco Osculati
    Abstract:

    Ganglion cells and topographically related nerves in the vallate papilla/von Ebner gland complex were investigated in rat tongue by cytochemical, immunocytochemical, and ultrastructural methods to evaluate the possible presence of different neuronal subpopulations. Immunostaining for neurofilaments and protein gene product 9.5 revealed ganglionic cell bodies and nerve fibers. A large part of the neurons were positive at immunostaining for neuronal nitric oxide synthase (NOS), vesicular acetylcholine transporter (VAChT), or vasoactive intestinal peptide (VIP). A small subset of nerve fibers revealed immunoreactivity for cholecystokinin. Axons traveling under the lingual epithelium were evidenced by their content of calcitonin gene-related peptide (CGRP) or substance P (SP). Cell bodies positive for SP or CGRP were not detected. Using methods of Co-Localization, three different neuronal classes were detected. The main population was composed of AChE/NADPH-diaphorase (NADPHd)-positive cells. Small groups of acetylcholine esterase (AChE)-positive/NADPHd-negative cells were visible. Isolated neurons were AChE-negative/NADPHd-positive. The results of Co-Localization experiments for VAChT/NOS were consistent with those obtained by cytochemical Co-Localization of AChE and NADPHd. Experiments of Co-Localization for peptidergic and nitrergic structures revealed CGRP- and SP-immunoreactive fibers in the vallate papilla/von Ebner gland ganglion. In conclusion, the results demonstrated in the VP/VEG complex peptidergic, cholinergic, and nitrergic neurons. The presence of different neuronal subclasses suggests that a certain degree of functional specialization may exist.