Crotalus

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 252 Experts worldwide ranked by ideXlab platform

Gilberto De Nucci - One of the best experts on this subject based on the ideXlab platform.

  • electrical field induced contractions on Crotalus durissus terrificus and bothrops jararaca aortae are caused by endothelium derived catecholamine
    PLOS ONE, 2018
    Co-Authors: Rafael Campos, José Carlos Cogo, Fabíola Z. Mónica, Alberto Fernando Oliveira Justo, Ronilson Agnaldo Moreno, Valéria Barbosa De Souza, Andre Almeida Schenka, Gilberto De Nucci
    Abstract:

    Endothelium is the main source of catecholamine release in the electrical-field stimulation (EFS)–induced aortic contractions of the non- venomous snake Panterophis guttatus. However, adrenergic vasomotor control in venomous snakes such as Crotalus durissus terrificus and Bothrops jararaca has not yet been investigated. Crotalus and Bothrops aortic rings were mounted in an organ bath system. EFS-induced aortae contractions were performed in the presence and absence of guanethidine (30 μM), phentolamine (10 μM) or tetrodotoxin (1 μM). Frequency-induced contractions were also performed in aortae with endothelium removed. Immunohistochemical localization of both tyrosine hydroxylase (TH) and S-100 protein in snake aortic rings and brains, as well as in human tissue (paraganglioma tumour) were carried out. EFS (4 to 16 Hz) induced frequency-dependent aortic contractions in both Crotalus and Bothrops. The EFS-induced contractions were significantly reduced in the presence of either guanethidine or phentolamine in both snakes (p<0.05), whereas tetrodotoxin had no effect in either. Removal of the endothelium abolished the EFS-induced contractions in both snakes aortae (p<0.05). Immunohistochemistry revealed TH localization in endothelium of both snake aortae and human vessels. Nerve fibers were not observed in either snake aortae. In contrast, both TH and S100 protein were observed in snake brains and human tissue. Vascular endothelium is the main source of catecholamine release in EFS-induced contractions in Crotalus and Bothrops aortae. Human endothelial cells also expressed TH, indicating that endothelium- derived catecholamines possibly occur in mammalian vessels.

  • Tetrodotoxin-insensitive electrical field stimulation-induced contractions on Crotalus durissus terrificus corpus cavernosum.
    PloS one, 2017
    Co-Authors: Rafael Campos, Marco Antonio De Oliveira, Renata Lopes Rodrigues, Julio Alejandro Rojas-moscoso, José Carlos Cogo, Edson Antunes, Fabíola Z. Mónica, Ronilson Agnaldo Moreno, Gilberto De Nucci
    Abstract:

    Reptiles are the first amniotes to develop an intromitent penis, however until now the mechanisms involved in the electrical field stimulation-induced contraction on corpora cavernosa isolated from Crotalus durissus terrificus were not investigated. Crotalus and rabbit corpora cavernosa were mounted in 10 mL organ baths for isometric tension recording. Electrical field stimulation (EFS)-induced contractions were performed in presence/absence of phentolamine (10 μM), guanethidine (30 μM), tetrodotoxin (1 μM and 1mM), A-803467 (10 μM), 3-iodo-L-Tyrosine (1 mM), salsolinol (3 μM) and a modified Krebs solution (equimolar substitution of NaCl by N-methyl-D-glucamine). Immuno-histochemistry for tyrosine hydroxylase was also performed. Electrical field stimulation (EFS; 8 Hz and 16 Hz) caused contractions in both Crotalus and rabbit corpora cavernosa. The contractions were abolished by previous incubation with either phentolamine or guanethidine. Tetrodotoxin (1 μM) also abolished the EFS-induced contractions of rabbit CC, but did not affect EFS-induced contractions of Crotalus CC. Addition of A-803467 (10 μM) did not change the EFS-induced contractions of Crotalus CC but abolished rabbit CC contractions. 3-iodo-L-Tyrosine and salsolinol had no effect on EFS-induced contractions of Crotalus CC and Rabbit CC. Replacement of NaCl by N- Methyl-D-glucamine (NMDG) abolished EFS-induced contractions of rabbit CC, but did not affect Crotalus CC. The presence of tyrosine hydroxylase was identified in endothelial cells only of Crotalus CC. Since the EFS-induced contractions of Crotalus CC is dependent on catecholamine release, insensitive to TTX, insensitive to A803467 and to NaCl replacement, it indicates that the source of cathecolamine is unlikely to be from adrenergic terminals. The finding that tyrosine hydroxylase is present in endothelial cells suggests that these cells can modulate Crotalus CC tone.

  • Effect of crotapotin and heparin on the rat paw oedema induced by different secretory phospholipases A2.
    Toxicon, 2000
    Co-Authors: Elen C.t. Landucci, B. Oliveira, Giuseppe Cirino, Edson Antunes, Marcos H Toyama, Sergio Marangoni, Gilberto De Nucci
    Abstract:

    The effects of crotapotin (a non-toxic and non-enzymatic acid polypeptide naturally complexed with phospholipase A2) and heparin on rat paw edema induced by different secretory phospholipases A2 (sPLA2) have been investigated. The ability of crotapotin to affect the enzymatic activity of the sPLA2(s) have also been evaluated. Secretory PLA2(s) obtained from both snake (Naja naja, Naja mocambique mocambique, Crotalus adamanteus and Crotalus durissus terrificus) and bee (Apis mellifera) venoms as well as that from bovine pancreas were used in this study. Rat paw oedema was induced by a single subplantar injection of the sPLA2s (5–30 μg/paw) in absence and presence of either crotapotin (10–100 μg/paw) or heparin (50 U/paw). Paw volume was measured using a hydroplethysmometer. Phospholipase A2 from Naja naja, Naja mocambique mocambique, Apis mellifera venoms and the basic component of Crotalus durissus terrificus venom all induced dose-dependent rat paw oedema whereas those from Crotalus adamanteus venom and bovine pancreas were ineffective. Paw oedema induced by PLA2(s) from both Naja naja and Apis mellifera venoms was significantly (P

Fabíola Z. Mónica - One of the best experts on this subject based on the ideXlab platform.

  • electrical field induced contractions on Crotalus durissus terrificus and bothrops jararaca aortae are caused by endothelium derived catecholamine
    PLOS ONE, 2018
    Co-Authors: Rafael Campos, José Carlos Cogo, Fabíola Z. Mónica, Alberto Fernando Oliveira Justo, Ronilson Agnaldo Moreno, Valéria Barbosa De Souza, Andre Almeida Schenka, Gilberto De Nucci
    Abstract:

    Endothelium is the main source of catecholamine release in the electrical-field stimulation (EFS)–induced aortic contractions of the non- venomous snake Panterophis guttatus. However, adrenergic vasomotor control in venomous snakes such as Crotalus durissus terrificus and Bothrops jararaca has not yet been investigated. Crotalus and Bothrops aortic rings were mounted in an organ bath system. EFS-induced aortae contractions were performed in the presence and absence of guanethidine (30 μM), phentolamine (10 μM) or tetrodotoxin (1 μM). Frequency-induced contractions were also performed in aortae with endothelium removed. Immunohistochemical localization of both tyrosine hydroxylase (TH) and S-100 protein in snake aortic rings and brains, as well as in human tissue (paraganglioma tumour) were carried out. EFS (4 to 16 Hz) induced frequency-dependent aortic contractions in both Crotalus and Bothrops. The EFS-induced contractions were significantly reduced in the presence of either guanethidine or phentolamine in both snakes (p<0.05), whereas tetrodotoxin had no effect in either. Removal of the endothelium abolished the EFS-induced contractions in both snakes aortae (p<0.05). Immunohistochemistry revealed TH localization in endothelium of both snake aortae and human vessels. Nerve fibers were not observed in either snake aortae. In contrast, both TH and S100 protein were observed in snake brains and human tissue. Vascular endothelium is the main source of catecholamine release in EFS-induced contractions in Crotalus and Bothrops aortae. Human endothelial cells also expressed TH, indicating that endothelium- derived catecholamines possibly occur in mammalian vessels.

  • Tetrodotoxin-insensitive electrical field stimulation-induced contractions on Crotalus durissus terrificus corpus cavernosum.
    PloS one, 2017
    Co-Authors: Rafael Campos, Marco Antonio De Oliveira, Renata Lopes Rodrigues, Julio Alejandro Rojas-moscoso, José Carlos Cogo, Edson Antunes, Fabíola Z. Mónica, Ronilson Agnaldo Moreno, Gilberto De Nucci
    Abstract:

    Reptiles are the first amniotes to develop an intromitent penis, however until now the mechanisms involved in the electrical field stimulation-induced contraction on corpora cavernosa isolated from Crotalus durissus terrificus were not investigated. Crotalus and rabbit corpora cavernosa were mounted in 10 mL organ baths for isometric tension recording. Electrical field stimulation (EFS)-induced contractions were performed in presence/absence of phentolamine (10 μM), guanethidine (30 μM), tetrodotoxin (1 μM and 1mM), A-803467 (10 μM), 3-iodo-L-Tyrosine (1 mM), salsolinol (3 μM) and a modified Krebs solution (equimolar substitution of NaCl by N-methyl-D-glucamine). Immuno-histochemistry for tyrosine hydroxylase was also performed. Electrical field stimulation (EFS; 8 Hz and 16 Hz) caused contractions in both Crotalus and rabbit corpora cavernosa. The contractions were abolished by previous incubation with either phentolamine or guanethidine. Tetrodotoxin (1 μM) also abolished the EFS-induced contractions of rabbit CC, but did not affect EFS-induced contractions of Crotalus CC. Addition of A-803467 (10 μM) did not change the EFS-induced contractions of Crotalus CC but abolished rabbit CC contractions. 3-iodo-L-Tyrosine and salsolinol had no effect on EFS-induced contractions of Crotalus CC and Rabbit CC. Replacement of NaCl by N- Methyl-D-glucamine (NMDG) abolished EFS-induced contractions of rabbit CC, but did not affect Crotalus CC. The presence of tyrosine hydroxylase was identified in endothelial cells only of Crotalus CC. Since the EFS-induced contractions of Crotalus CC is dependent on catecholamine release, insensitive to TTX, insensitive to A803467 and to NaCl replacement, it indicates that the source of cathecolamine is unlikely to be from adrenergic terminals. The finding that tyrosine hydroxylase is present in endothelial cells suggests that these cells can modulate Crotalus CC tone.

  • The Evolutionary Implications of Hemipenial Morphology of Rattlesnake Crotalus durissus terrificus (Laurent, 1768) (Serpentes: Viperidae: Crotalinae).
    PLOS ONE, 2013
    Co-Authors: Marcovan Porto, Marco Antonio De Oliveira, Lorenzo Pissinatti, Renata Lopes Rodrigues, Julio Alejandro Rojas-moscoso, José Carlos Cogo, Konradin Metze, Edson Antunes, César R.d. Nahoum, Fabíola Z. Mónica
    Abstract:

    Most amniotes vertebrates have an intromittent organ to deliver semen. The reptile Sphenodon and most birds lost the ancestral penis and developed a cloaca-cloaca mating. Known as hemipenises, the copulatory organ of Squamata shows unique features between the amniotes intromittent organ. They are the only paired intromittent organs across amniotes and are fully inverted and encapsulated in the tail when not in use. The histology and ultrastructure of the hemipenes of Crotalus durissus rattlesnake is described as the evolutionary implications of the main features discussed. The organization of hemipenis of Crotalus durissus terrificus in two concentric corpora cavernosa is similar to other Squamata but differ markedly from the organization of the penis found in crocodilians, testudinata, birds and mammals. Based on the available data, the penis of the ancestral amniotes was made of connective tissue and the incorporation of smooth muscle in the framework of the sinusoids occurred independently in mammals and Crotalus durissus. The propulsor action of the muscle retractor penis basalis was confirmed and therefore the named should be changed to musculus hemipenis propulsor.The retractor penis magnus found in Squamata has no homology to the retractor penis of mammals, although both are responsible for the retraction of the copulatory organ.

José Carlos Cogo - One of the best experts on this subject based on the ideXlab platform.

  • electrical field induced contractions on Crotalus durissus terrificus and bothrops jararaca aortae are caused by endothelium derived catecholamine
    PLOS ONE, 2018
    Co-Authors: Rafael Campos, José Carlos Cogo, Fabíola Z. Mónica, Alberto Fernando Oliveira Justo, Ronilson Agnaldo Moreno, Valéria Barbosa De Souza, Andre Almeida Schenka, Gilberto De Nucci
    Abstract:

    Endothelium is the main source of catecholamine release in the electrical-field stimulation (EFS)–induced aortic contractions of the non- venomous snake Panterophis guttatus. However, adrenergic vasomotor control in venomous snakes such as Crotalus durissus terrificus and Bothrops jararaca has not yet been investigated. Crotalus and Bothrops aortic rings were mounted in an organ bath system. EFS-induced aortae contractions were performed in the presence and absence of guanethidine (30 μM), phentolamine (10 μM) or tetrodotoxin (1 μM). Frequency-induced contractions were also performed in aortae with endothelium removed. Immunohistochemical localization of both tyrosine hydroxylase (TH) and S-100 protein in snake aortic rings and brains, as well as in human tissue (paraganglioma tumour) were carried out. EFS (4 to 16 Hz) induced frequency-dependent aortic contractions in both Crotalus and Bothrops. The EFS-induced contractions were significantly reduced in the presence of either guanethidine or phentolamine in both snakes (p<0.05), whereas tetrodotoxin had no effect in either. Removal of the endothelium abolished the EFS-induced contractions in both snakes aortae (p<0.05). Immunohistochemistry revealed TH localization in endothelium of both snake aortae and human vessels. Nerve fibers were not observed in either snake aortae. In contrast, both TH and S100 protein were observed in snake brains and human tissue. Vascular endothelium is the main source of catecholamine release in EFS-induced contractions in Crotalus and Bothrops aortae. Human endothelial cells also expressed TH, indicating that endothelium- derived catecholamines possibly occur in mammalian vessels.

  • Tetrodotoxin-insensitive electrical field stimulation-induced contractions on Crotalus durissus terrificus corpus cavernosum.
    PloS one, 2017
    Co-Authors: Rafael Campos, Marco Antonio De Oliveira, Renata Lopes Rodrigues, Julio Alejandro Rojas-moscoso, José Carlos Cogo, Edson Antunes, Fabíola Z. Mónica, Ronilson Agnaldo Moreno, Gilberto De Nucci
    Abstract:

    Reptiles are the first amniotes to develop an intromitent penis, however until now the mechanisms involved in the electrical field stimulation-induced contraction on corpora cavernosa isolated from Crotalus durissus terrificus were not investigated. Crotalus and rabbit corpora cavernosa were mounted in 10 mL organ baths for isometric tension recording. Electrical field stimulation (EFS)-induced contractions were performed in presence/absence of phentolamine (10 μM), guanethidine (30 μM), tetrodotoxin (1 μM and 1mM), A-803467 (10 μM), 3-iodo-L-Tyrosine (1 mM), salsolinol (3 μM) and a modified Krebs solution (equimolar substitution of NaCl by N-methyl-D-glucamine). Immuno-histochemistry for tyrosine hydroxylase was also performed. Electrical field stimulation (EFS; 8 Hz and 16 Hz) caused contractions in both Crotalus and rabbit corpora cavernosa. The contractions were abolished by previous incubation with either phentolamine or guanethidine. Tetrodotoxin (1 μM) also abolished the EFS-induced contractions of rabbit CC, but did not affect EFS-induced contractions of Crotalus CC. Addition of A-803467 (10 μM) did not change the EFS-induced contractions of Crotalus CC but abolished rabbit CC contractions. 3-iodo-L-Tyrosine and salsolinol had no effect on EFS-induced contractions of Crotalus CC and Rabbit CC. Replacement of NaCl by N- Methyl-D-glucamine (NMDG) abolished EFS-induced contractions of rabbit CC, but did not affect Crotalus CC. The presence of tyrosine hydroxylase was identified in endothelial cells only of Crotalus CC. Since the EFS-induced contractions of Crotalus CC is dependent on catecholamine release, insensitive to TTX, insensitive to A803467 and to NaCl replacement, it indicates that the source of cathecolamine is unlikely to be from adrenergic terminals. The finding that tyrosine hydroxylase is present in endothelial cells suggests that these cells can modulate Crotalus CC tone.

  • The Evolutionary Implications of Hemipenial Morphology of Rattlesnake Crotalus durissus terrificus (Laurent, 1768) (Serpentes: Viperidae: Crotalinae).
    PLOS ONE, 2013
    Co-Authors: Marcovan Porto, Marco Antonio De Oliveira, Lorenzo Pissinatti, Renata Lopes Rodrigues, Julio Alejandro Rojas-moscoso, José Carlos Cogo, Konradin Metze, Edson Antunes, César R.d. Nahoum, Fabíola Z. Mónica
    Abstract:

    Most amniotes vertebrates have an intromittent organ to deliver semen. The reptile Sphenodon and most birds lost the ancestral penis and developed a cloaca-cloaca mating. Known as hemipenises, the copulatory organ of Squamata shows unique features between the amniotes intromittent organ. They are the only paired intromittent organs across amniotes and are fully inverted and encapsulated in the tail when not in use. The histology and ultrastructure of the hemipenes of Crotalus durissus rattlesnake is described as the evolutionary implications of the main features discussed. The organization of hemipenis of Crotalus durissus terrificus in two concentric corpora cavernosa is similar to other Squamata but differ markedly from the organization of the penis found in crocodilians, testudinata, birds and mammals. Based on the available data, the penis of the ancestral amniotes was made of connective tissue and the incorporation of smooth muscle in the framework of the sinusoids occurred independently in mammals and Crotalus durissus. The propulsor action of the muscle retractor penis basalis was confirmed and therefore the named should be changed to musculus hemipenis propulsor.The retractor penis magnus found in Squamata has no homology to the retractor penis of mammals, although both are responsible for the retraction of the copulatory organ.

Rafael Campos - One of the best experts on this subject based on the ideXlab platform.

  • electrical field induced contractions on Crotalus durissus terrificus and bothrops jararaca aortae are caused by endothelium derived catecholamine
    PLOS ONE, 2018
    Co-Authors: Rafael Campos, José Carlos Cogo, Fabíola Z. Mónica, Alberto Fernando Oliveira Justo, Ronilson Agnaldo Moreno, Valéria Barbosa De Souza, Andre Almeida Schenka, Gilberto De Nucci
    Abstract:

    Endothelium is the main source of catecholamine release in the electrical-field stimulation (EFS)–induced aortic contractions of the non- venomous snake Panterophis guttatus. However, adrenergic vasomotor control in venomous snakes such as Crotalus durissus terrificus and Bothrops jararaca has not yet been investigated. Crotalus and Bothrops aortic rings were mounted in an organ bath system. EFS-induced aortae contractions were performed in the presence and absence of guanethidine (30 μM), phentolamine (10 μM) or tetrodotoxin (1 μM). Frequency-induced contractions were also performed in aortae with endothelium removed. Immunohistochemical localization of both tyrosine hydroxylase (TH) and S-100 protein in snake aortic rings and brains, as well as in human tissue (paraganglioma tumour) were carried out. EFS (4 to 16 Hz) induced frequency-dependent aortic contractions in both Crotalus and Bothrops. The EFS-induced contractions were significantly reduced in the presence of either guanethidine or phentolamine in both snakes (p<0.05), whereas tetrodotoxin had no effect in either. Removal of the endothelium abolished the EFS-induced contractions in both snakes aortae (p<0.05). Immunohistochemistry revealed TH localization in endothelium of both snake aortae and human vessels. Nerve fibers were not observed in either snake aortae. In contrast, both TH and S100 protein were observed in snake brains and human tissue. Vascular endothelium is the main source of catecholamine release in EFS-induced contractions in Crotalus and Bothrops aortae. Human endothelial cells also expressed TH, indicating that endothelium- derived catecholamines possibly occur in mammalian vessels.

  • Tetrodotoxin-insensitive electrical field stimulation-induced contractions on Crotalus durissus terrificus corpus cavernosum.
    PloS one, 2017
    Co-Authors: Rafael Campos, Marco Antonio De Oliveira, Renata Lopes Rodrigues, Julio Alejandro Rojas-moscoso, José Carlos Cogo, Edson Antunes, Fabíola Z. Mónica, Ronilson Agnaldo Moreno, Gilberto De Nucci
    Abstract:

    Reptiles are the first amniotes to develop an intromitent penis, however until now the mechanisms involved in the electrical field stimulation-induced contraction on corpora cavernosa isolated from Crotalus durissus terrificus were not investigated. Crotalus and rabbit corpora cavernosa were mounted in 10 mL organ baths for isometric tension recording. Electrical field stimulation (EFS)-induced contractions were performed in presence/absence of phentolamine (10 μM), guanethidine (30 μM), tetrodotoxin (1 μM and 1mM), A-803467 (10 μM), 3-iodo-L-Tyrosine (1 mM), salsolinol (3 μM) and a modified Krebs solution (equimolar substitution of NaCl by N-methyl-D-glucamine). Immuno-histochemistry for tyrosine hydroxylase was also performed. Electrical field stimulation (EFS; 8 Hz and 16 Hz) caused contractions in both Crotalus and rabbit corpora cavernosa. The contractions were abolished by previous incubation with either phentolamine or guanethidine. Tetrodotoxin (1 μM) also abolished the EFS-induced contractions of rabbit CC, but did not affect EFS-induced contractions of Crotalus CC. Addition of A-803467 (10 μM) did not change the EFS-induced contractions of Crotalus CC but abolished rabbit CC contractions. 3-iodo-L-Tyrosine and salsolinol had no effect on EFS-induced contractions of Crotalus CC and Rabbit CC. Replacement of NaCl by N- Methyl-D-glucamine (NMDG) abolished EFS-induced contractions of rabbit CC, but did not affect Crotalus CC. The presence of tyrosine hydroxylase was identified in endothelial cells only of Crotalus CC. Since the EFS-induced contractions of Crotalus CC is dependent on catecholamine release, insensitive to TTX, insensitive to A803467 and to NaCl replacement, it indicates that the source of cathecolamine is unlikely to be from adrenergic terminals. The finding that tyrosine hydroxylase is present in endothelial cells suggests that these cells can modulate Crotalus CC tone.

Rebecca A. Christoffel - One of the best experts on this subject based on the ideXlab platform.