CXCR5 Receptor

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 33 Experts worldwide ranked by ideXlab platform

Michela Croce - One of the best experts on this subject based on the ideXlab platform.

  • role of cxcl13 CXCR5 crosstalk between malignant neuroblastoma cells and schwannian stromal cells in neuroblastic tumors
    Molecular Cancer Research, 2011
    Co-Authors: Federica Grosso, Simona Coco, Francesca Valdora, Sandra Salvi, Simona Boccardo, Mauro Truini, Roberto Benelli, Sara Stigliani, Paola Scaruffi, Michela Croce
    Abstract:

    Neuroblastoma is a stroma-poor (SP) aggressive pediatric cancer belonging to neuroblastic tumors, also including ganglioneuroblastoma and ganglioneuroma, two stroma-rich (SR) less aggressive tumors. Our previous gene-expression profiling analysis showed a different CXCL13 mRNA expression between SP and SR tumors. Therefore, we studied 13 SP and 13 SR tumors by reverse transcription quantitative real-time PCR (RT-qPCR) and we found that CXCR5b was more expressed in SP than in SR and CXCL13 was predominantly expressed in SR tumors. Then, we isolated neuroblastic and Schwannian stromal cells by laser capture microdissection and we found that malignant neuroblasts express CXCR5b mRNA, whereas Schwannian stromal cells express CXCL13. Immunohistochemistry confirmed that stroma expresses CXCL13 but not CXCR5. To better understand the role of CXCL13 and CXCR5 in neuroblastic tumors we studied 11 neuroblastoma cell lines and we detected a heterogeneous expression of CXCL13 and CXCR5b. Interestingly, we found that only CXCR5b splice variant was expressed in both tumors and neuroblastoma lines, whereas CXCR5a was never detected. Moreover, we found that neuroblastoma cells expressing CXCR5 Receptor migrate toward a source of recombinant CXCL13. Lastly, neuroblastoma cells induced to glial cell differentiation expressed CXCL13 mRNA and protein. The chemokine released in the culture medium was able to stimulate chemotaxis of LA1–5S neuroblastoma cells. Collectively, our data suggest that CXCL13 produced by stromal cells may contribute to the generation of an environment in which the malignant neuroblasts are retained, thus limiting the possible development of metastases in patients with SR tumor. Mol Cancer Res; 9(7); 815–23. ©2011 AACR.

  • Role of CXCL13-CXCR5 Crosstalk Between Malignant Neuroblastoma Cells and Schwannian Stromal Cells in Neuroblastic Tumors
    Molecular cancer research : MCR, 2011
    Co-Authors: Federica Grosso, Simona Coco, Francesca Valdora, Sandra Salvi, Simona Boccardo, Mauro Truini, Roberto Benelli, Sara Stigliani, Paola Scaruffi, Michela Croce
    Abstract:

    Neuroblastoma is a stroma-poor (SP) aggressive pediatric cancer belonging to neuroblastic tumors, also including ganglioneuroblastoma and ganglioneuroma, two stroma-rich (SR) less aggressive tumors. Our previous gene-expression profiling analysis showed a different CXCL13 mRNA expression between SP and SR tumors. Therefore, we studied 13 SP and 13 SR tumors by reverse transcription quantitative real-time PCR (RT-qPCR) and we found that CXCR5b was more expressed in SP than in SR and CXCL13 was predominantly expressed in SR tumors. Then, we isolated neuroblastic and Schwannian stromal cells by laser capture microdissection and we found that malignant neuroblasts express CXCR5b mRNA, whereas Schwannian stromal cells express CXCL13. Immunohistochemistry confirmed that stroma expresses CXCL13 but not CXCR5. To better understand the role of CXCL13 and CXCR5 in neuroblastic tumors we studied 11 neuroblastoma cell lines and we detected a heterogeneous expression of CXCL13 and CXCR5b. Interestingly, we found that only CXCR5b splice variant was expressed in both tumors and neuroblastoma lines, whereas CXCR5a was never detected. Moreover, we found that neuroblastoma cells expressing CXCR5 Receptor migrate toward a source of recombinant CXCL13. Lastly, neuroblastoma cells induced to glial cell differentiation expressed CXCL13 mRNA and protein. The chemokine released in the culture medium was able to stimulate chemotaxis of LA1-5S neuroblastoma cells. Collectively, our data suggest that CXCL13 produced by stromal cells may contribute to the generation of an environment in which the malignant neuroblasts are retained, thus limiting the possible development of metastases in patients with SR tumor.

Federica Grosso - One of the best experts on this subject based on the ideXlab platform.

  • role of cxcl13 CXCR5 crosstalk between malignant neuroblastoma cells and schwannian stromal cells in neuroblastic tumors
    Molecular Cancer Research, 2011
    Co-Authors: Federica Grosso, Simona Coco, Francesca Valdora, Sandra Salvi, Simona Boccardo, Mauro Truini, Roberto Benelli, Sara Stigliani, Paola Scaruffi, Michela Croce
    Abstract:

    Neuroblastoma is a stroma-poor (SP) aggressive pediatric cancer belonging to neuroblastic tumors, also including ganglioneuroblastoma and ganglioneuroma, two stroma-rich (SR) less aggressive tumors. Our previous gene-expression profiling analysis showed a different CXCL13 mRNA expression between SP and SR tumors. Therefore, we studied 13 SP and 13 SR tumors by reverse transcription quantitative real-time PCR (RT-qPCR) and we found that CXCR5b was more expressed in SP than in SR and CXCL13 was predominantly expressed in SR tumors. Then, we isolated neuroblastic and Schwannian stromal cells by laser capture microdissection and we found that malignant neuroblasts express CXCR5b mRNA, whereas Schwannian stromal cells express CXCL13. Immunohistochemistry confirmed that stroma expresses CXCL13 but not CXCR5. To better understand the role of CXCL13 and CXCR5 in neuroblastic tumors we studied 11 neuroblastoma cell lines and we detected a heterogeneous expression of CXCL13 and CXCR5b. Interestingly, we found that only CXCR5b splice variant was expressed in both tumors and neuroblastoma lines, whereas CXCR5a was never detected. Moreover, we found that neuroblastoma cells expressing CXCR5 Receptor migrate toward a source of recombinant CXCL13. Lastly, neuroblastoma cells induced to glial cell differentiation expressed CXCL13 mRNA and protein. The chemokine released in the culture medium was able to stimulate chemotaxis of LA1–5S neuroblastoma cells. Collectively, our data suggest that CXCL13 produced by stromal cells may contribute to the generation of an environment in which the malignant neuroblasts are retained, thus limiting the possible development of metastases in patients with SR tumor. Mol Cancer Res; 9(7); 815–23. ©2011 AACR.

  • Role of CXCL13-CXCR5 Crosstalk Between Malignant Neuroblastoma Cells and Schwannian Stromal Cells in Neuroblastic Tumors
    Molecular cancer research : MCR, 2011
    Co-Authors: Federica Grosso, Simona Coco, Francesca Valdora, Sandra Salvi, Simona Boccardo, Mauro Truini, Roberto Benelli, Sara Stigliani, Paola Scaruffi, Michela Croce
    Abstract:

    Neuroblastoma is a stroma-poor (SP) aggressive pediatric cancer belonging to neuroblastic tumors, also including ganglioneuroblastoma and ganglioneuroma, two stroma-rich (SR) less aggressive tumors. Our previous gene-expression profiling analysis showed a different CXCL13 mRNA expression between SP and SR tumors. Therefore, we studied 13 SP and 13 SR tumors by reverse transcription quantitative real-time PCR (RT-qPCR) and we found that CXCR5b was more expressed in SP than in SR and CXCL13 was predominantly expressed in SR tumors. Then, we isolated neuroblastic and Schwannian stromal cells by laser capture microdissection and we found that malignant neuroblasts express CXCR5b mRNA, whereas Schwannian stromal cells express CXCL13. Immunohistochemistry confirmed that stroma expresses CXCL13 but not CXCR5. To better understand the role of CXCL13 and CXCR5 in neuroblastic tumors we studied 11 neuroblastoma cell lines and we detected a heterogeneous expression of CXCL13 and CXCR5b. Interestingly, we found that only CXCR5b splice variant was expressed in both tumors and neuroblastoma lines, whereas CXCR5a was never detected. Moreover, we found that neuroblastoma cells expressing CXCR5 Receptor migrate toward a source of recombinant CXCL13. Lastly, neuroblastoma cells induced to glial cell differentiation expressed CXCL13 mRNA and protein. The chemokine released in the culture medium was able to stimulate chemotaxis of LA1-5S neuroblastoma cells. Collectively, our data suggest that CXCL13 produced by stromal cells may contribute to the generation of an environment in which the malignant neuroblasts are retained, thus limiting the possible development of metastases in patients with SR tumor.

Simona Coco - One of the best experts on this subject based on the ideXlab platform.

  • role of cxcl13 CXCR5 crosstalk between malignant neuroblastoma cells and schwannian stromal cells in neuroblastic tumors
    Molecular Cancer Research, 2011
    Co-Authors: Federica Grosso, Simona Coco, Francesca Valdora, Sandra Salvi, Simona Boccardo, Mauro Truini, Roberto Benelli, Sara Stigliani, Paola Scaruffi, Michela Croce
    Abstract:

    Neuroblastoma is a stroma-poor (SP) aggressive pediatric cancer belonging to neuroblastic tumors, also including ganglioneuroblastoma and ganglioneuroma, two stroma-rich (SR) less aggressive tumors. Our previous gene-expression profiling analysis showed a different CXCL13 mRNA expression between SP and SR tumors. Therefore, we studied 13 SP and 13 SR tumors by reverse transcription quantitative real-time PCR (RT-qPCR) and we found that CXCR5b was more expressed in SP than in SR and CXCL13 was predominantly expressed in SR tumors. Then, we isolated neuroblastic and Schwannian stromal cells by laser capture microdissection and we found that malignant neuroblasts express CXCR5b mRNA, whereas Schwannian stromal cells express CXCL13. Immunohistochemistry confirmed that stroma expresses CXCL13 but not CXCR5. To better understand the role of CXCL13 and CXCR5 in neuroblastic tumors we studied 11 neuroblastoma cell lines and we detected a heterogeneous expression of CXCL13 and CXCR5b. Interestingly, we found that only CXCR5b splice variant was expressed in both tumors and neuroblastoma lines, whereas CXCR5a was never detected. Moreover, we found that neuroblastoma cells expressing CXCR5 Receptor migrate toward a source of recombinant CXCL13. Lastly, neuroblastoma cells induced to glial cell differentiation expressed CXCL13 mRNA and protein. The chemokine released in the culture medium was able to stimulate chemotaxis of LA1–5S neuroblastoma cells. Collectively, our data suggest that CXCL13 produced by stromal cells may contribute to the generation of an environment in which the malignant neuroblasts are retained, thus limiting the possible development of metastases in patients with SR tumor. Mol Cancer Res; 9(7); 815–23. ©2011 AACR.

  • Role of CXCL13-CXCR5 Crosstalk Between Malignant Neuroblastoma Cells and Schwannian Stromal Cells in Neuroblastic Tumors
    Molecular cancer research : MCR, 2011
    Co-Authors: Federica Grosso, Simona Coco, Francesca Valdora, Sandra Salvi, Simona Boccardo, Mauro Truini, Roberto Benelli, Sara Stigliani, Paola Scaruffi, Michela Croce
    Abstract:

    Neuroblastoma is a stroma-poor (SP) aggressive pediatric cancer belonging to neuroblastic tumors, also including ganglioneuroblastoma and ganglioneuroma, two stroma-rich (SR) less aggressive tumors. Our previous gene-expression profiling analysis showed a different CXCL13 mRNA expression between SP and SR tumors. Therefore, we studied 13 SP and 13 SR tumors by reverse transcription quantitative real-time PCR (RT-qPCR) and we found that CXCR5b was more expressed in SP than in SR and CXCL13 was predominantly expressed in SR tumors. Then, we isolated neuroblastic and Schwannian stromal cells by laser capture microdissection and we found that malignant neuroblasts express CXCR5b mRNA, whereas Schwannian stromal cells express CXCL13. Immunohistochemistry confirmed that stroma expresses CXCL13 but not CXCR5. To better understand the role of CXCL13 and CXCR5 in neuroblastic tumors we studied 11 neuroblastoma cell lines and we detected a heterogeneous expression of CXCL13 and CXCR5b. Interestingly, we found that only CXCR5b splice variant was expressed in both tumors and neuroblastoma lines, whereas CXCR5a was never detected. Moreover, we found that neuroblastoma cells expressing CXCR5 Receptor migrate toward a source of recombinant CXCL13. Lastly, neuroblastoma cells induced to glial cell differentiation expressed CXCL13 mRNA and protein. The chemokine released in the culture medium was able to stimulate chemotaxis of LA1-5S neuroblastoma cells. Collectively, our data suggest that CXCL13 produced by stromal cells may contribute to the generation of an environment in which the malignant neuroblasts are retained, thus limiting the possible development of metastases in patients with SR tumor.

Paola Scaruffi - One of the best experts on this subject based on the ideXlab platform.

  • role of cxcl13 CXCR5 crosstalk between malignant neuroblastoma cells and schwannian stromal cells in neuroblastic tumors
    Molecular Cancer Research, 2011
    Co-Authors: Federica Grosso, Simona Coco, Francesca Valdora, Sandra Salvi, Simona Boccardo, Mauro Truini, Roberto Benelli, Sara Stigliani, Paola Scaruffi, Michela Croce
    Abstract:

    Neuroblastoma is a stroma-poor (SP) aggressive pediatric cancer belonging to neuroblastic tumors, also including ganglioneuroblastoma and ganglioneuroma, two stroma-rich (SR) less aggressive tumors. Our previous gene-expression profiling analysis showed a different CXCL13 mRNA expression between SP and SR tumors. Therefore, we studied 13 SP and 13 SR tumors by reverse transcription quantitative real-time PCR (RT-qPCR) and we found that CXCR5b was more expressed in SP than in SR and CXCL13 was predominantly expressed in SR tumors. Then, we isolated neuroblastic and Schwannian stromal cells by laser capture microdissection and we found that malignant neuroblasts express CXCR5b mRNA, whereas Schwannian stromal cells express CXCL13. Immunohistochemistry confirmed that stroma expresses CXCL13 but not CXCR5. To better understand the role of CXCL13 and CXCR5 in neuroblastic tumors we studied 11 neuroblastoma cell lines and we detected a heterogeneous expression of CXCL13 and CXCR5b. Interestingly, we found that only CXCR5b splice variant was expressed in both tumors and neuroblastoma lines, whereas CXCR5a was never detected. Moreover, we found that neuroblastoma cells expressing CXCR5 Receptor migrate toward a source of recombinant CXCL13. Lastly, neuroblastoma cells induced to glial cell differentiation expressed CXCL13 mRNA and protein. The chemokine released in the culture medium was able to stimulate chemotaxis of LA1–5S neuroblastoma cells. Collectively, our data suggest that CXCL13 produced by stromal cells may contribute to the generation of an environment in which the malignant neuroblasts are retained, thus limiting the possible development of metastases in patients with SR tumor. Mol Cancer Res; 9(7); 815–23. ©2011 AACR.

  • Role of CXCL13-CXCR5 Crosstalk Between Malignant Neuroblastoma Cells and Schwannian Stromal Cells in Neuroblastic Tumors
    Molecular cancer research : MCR, 2011
    Co-Authors: Federica Grosso, Simona Coco, Francesca Valdora, Sandra Salvi, Simona Boccardo, Mauro Truini, Roberto Benelli, Sara Stigliani, Paola Scaruffi, Michela Croce
    Abstract:

    Neuroblastoma is a stroma-poor (SP) aggressive pediatric cancer belonging to neuroblastic tumors, also including ganglioneuroblastoma and ganglioneuroma, two stroma-rich (SR) less aggressive tumors. Our previous gene-expression profiling analysis showed a different CXCL13 mRNA expression between SP and SR tumors. Therefore, we studied 13 SP and 13 SR tumors by reverse transcription quantitative real-time PCR (RT-qPCR) and we found that CXCR5b was more expressed in SP than in SR and CXCL13 was predominantly expressed in SR tumors. Then, we isolated neuroblastic and Schwannian stromal cells by laser capture microdissection and we found that malignant neuroblasts express CXCR5b mRNA, whereas Schwannian stromal cells express CXCL13. Immunohistochemistry confirmed that stroma expresses CXCL13 but not CXCR5. To better understand the role of CXCL13 and CXCR5 in neuroblastic tumors we studied 11 neuroblastoma cell lines and we detected a heterogeneous expression of CXCL13 and CXCR5b. Interestingly, we found that only CXCR5b splice variant was expressed in both tumors and neuroblastoma lines, whereas CXCR5a was never detected. Moreover, we found that neuroblastoma cells expressing CXCR5 Receptor migrate toward a source of recombinant CXCL13. Lastly, neuroblastoma cells induced to glial cell differentiation expressed CXCL13 mRNA and protein. The chemokine released in the culture medium was able to stimulate chemotaxis of LA1-5S neuroblastoma cells. Collectively, our data suggest that CXCL13 produced by stromal cells may contribute to the generation of an environment in which the malignant neuroblasts are retained, thus limiting the possible development of metastases in patients with SR tumor.

Sara Stigliani - One of the best experts on this subject based on the ideXlab platform.

  • role of cxcl13 CXCR5 crosstalk between malignant neuroblastoma cells and schwannian stromal cells in neuroblastic tumors
    Molecular Cancer Research, 2011
    Co-Authors: Federica Grosso, Simona Coco, Francesca Valdora, Sandra Salvi, Simona Boccardo, Mauro Truini, Roberto Benelli, Sara Stigliani, Paola Scaruffi, Michela Croce
    Abstract:

    Neuroblastoma is a stroma-poor (SP) aggressive pediatric cancer belonging to neuroblastic tumors, also including ganglioneuroblastoma and ganglioneuroma, two stroma-rich (SR) less aggressive tumors. Our previous gene-expression profiling analysis showed a different CXCL13 mRNA expression between SP and SR tumors. Therefore, we studied 13 SP and 13 SR tumors by reverse transcription quantitative real-time PCR (RT-qPCR) and we found that CXCR5b was more expressed in SP than in SR and CXCL13 was predominantly expressed in SR tumors. Then, we isolated neuroblastic and Schwannian stromal cells by laser capture microdissection and we found that malignant neuroblasts express CXCR5b mRNA, whereas Schwannian stromal cells express CXCL13. Immunohistochemistry confirmed that stroma expresses CXCL13 but not CXCR5. To better understand the role of CXCL13 and CXCR5 in neuroblastic tumors we studied 11 neuroblastoma cell lines and we detected a heterogeneous expression of CXCL13 and CXCR5b. Interestingly, we found that only CXCR5b splice variant was expressed in both tumors and neuroblastoma lines, whereas CXCR5a was never detected. Moreover, we found that neuroblastoma cells expressing CXCR5 Receptor migrate toward a source of recombinant CXCL13. Lastly, neuroblastoma cells induced to glial cell differentiation expressed CXCL13 mRNA and protein. The chemokine released in the culture medium was able to stimulate chemotaxis of LA1–5S neuroblastoma cells. Collectively, our data suggest that CXCL13 produced by stromal cells may contribute to the generation of an environment in which the malignant neuroblasts are retained, thus limiting the possible development of metastases in patients with SR tumor. Mol Cancer Res; 9(7); 815–23. ©2011 AACR.

  • Role of CXCL13-CXCR5 Crosstalk Between Malignant Neuroblastoma Cells and Schwannian Stromal Cells in Neuroblastic Tumors
    Molecular cancer research : MCR, 2011
    Co-Authors: Federica Grosso, Simona Coco, Francesca Valdora, Sandra Salvi, Simona Boccardo, Mauro Truini, Roberto Benelli, Sara Stigliani, Paola Scaruffi, Michela Croce
    Abstract:

    Neuroblastoma is a stroma-poor (SP) aggressive pediatric cancer belonging to neuroblastic tumors, also including ganglioneuroblastoma and ganglioneuroma, two stroma-rich (SR) less aggressive tumors. Our previous gene-expression profiling analysis showed a different CXCL13 mRNA expression between SP and SR tumors. Therefore, we studied 13 SP and 13 SR tumors by reverse transcription quantitative real-time PCR (RT-qPCR) and we found that CXCR5b was more expressed in SP than in SR and CXCL13 was predominantly expressed in SR tumors. Then, we isolated neuroblastic and Schwannian stromal cells by laser capture microdissection and we found that malignant neuroblasts express CXCR5b mRNA, whereas Schwannian stromal cells express CXCL13. Immunohistochemistry confirmed that stroma expresses CXCL13 but not CXCR5. To better understand the role of CXCL13 and CXCR5 in neuroblastic tumors we studied 11 neuroblastoma cell lines and we detected a heterogeneous expression of CXCL13 and CXCR5b. Interestingly, we found that only CXCR5b splice variant was expressed in both tumors and neuroblastoma lines, whereas CXCR5a was never detected. Moreover, we found that neuroblastoma cells expressing CXCR5 Receptor migrate toward a source of recombinant CXCL13. Lastly, neuroblastoma cells induced to glial cell differentiation expressed CXCL13 mRNA and protein. The chemokine released in the culture medium was able to stimulate chemotaxis of LA1-5S neuroblastoma cells. Collectively, our data suggest that CXCL13 produced by stromal cells may contribute to the generation of an environment in which the malignant neuroblasts are retained, thus limiting the possible development of metastases in patients with SR tumor.