Daboia russellii

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 57 Experts worldwide ranked by ideXlab platform

B L Dhananjaya - One of the best experts on this subject based on the ideXlab platform.

  • antibacterial potential of a basic phospholipase a2 vrv pl v of Daboia russellii pulchella russell s viper venom
    Biochemistry, 2014
    Co-Authors: S Sudarshan, B L Dhananjaya
    Abstract:

    Microbial/bacterial resistance against antibiotics is considered as a potentially serious threat to public health. Further, as these antibiotics elicit side effects, there is interest in developing new molecules with novel modes of action from diverse organisms. Along these lines, in this study the antibacterial potential of the basic protein VRV-PL-V (Vipera russellii venom phospholipase A2 fraction V) of Daboia russellii pulchella venom was evaluated. VRV-PL-V demonstrated a potent antibacterial activity against all the human pathogenic strains tested. It inhibited more effectively Gram-positive bacteria like Staphylococcus aureus and Bacillus subtilis when compared to Gram-negative bacteria like Escherichia coli, Vibrio cholerae, Klebsiella pneumoniae, and Salmonella paratyphi. It inhibited bacterial growth with MIC values ranging from 13 to 24 μg/ml. The antibacterial potential of VRV-PL-V was comparable to the standards used like gentamycin, chloramphenicol, and streptomycin. There was a strong correlation between PLA2 activities and hemolytic and antibacterial activity. It was found that even in the presence of p-bromophenacyl bromide (an inhibitor of PLA2 enzymatic activity), there was marked antibacterial activity, suggesting dissociation or partial overlapping of the bactericidal/antimicrobial domains. Therefore, this study shows that although there is a strong correlation between enzymatic and antimicrobial activities of VRV-PL-V, it may also possess other properties that mimic bactericidal/membrane permeability-increasing protein.

  • anti venom potential of aqueous extract of stem bark of mangifera indica l against Daboia russellii russell s viper venom
    Indian Journal of Biochemistry & Biophysics, 2011
    Co-Authors: B L Dhananjaya, K.s. Girish, Farhan Zameer, Cletus J M Dsouza
    Abstract:

    Several plant extracts rich in pharmacologically active compounds have shown to antagonize venom of several species. Mangifera indica has been used against snakebite by the traditional healers. However, there is paucity of scientific data in support. In this study, we evaluated the antivenom potential of aqueous extract of stem bark of M. indica against D. russellii venom-induced pharmacological effects such as life myotoxicity, edema, LD50 etc. The extract inhibited the phospholipase, protease, hyaluronidase, 5'nucleotidase, ATPase and alkaline phosphomonoesterase activities with varying IC50 values. It significantly inhibited both metalloproteases and serine proteases activities. Further, the extract significantly reduced the myotoxicity of the venom, as evident by the reduction of serum creatin kinase and lactate dehydrogenase activities. Though the extract completely inhibited in vitro PLA2 activity, it was unable to completely inhibit in situ hemolytic and in vivo edema-inducing activities, usually brought about by PLA2s. In lethality studies, co-injection of the venom preincubated with the extract showed higher protection than the independent injection of venom, followed by the extract in the mice. However, in both the cases the extract -a cocktail of inhibitors significantly increased the survival time, when compared to that of mice injected (i.p) with the venom alone. These results encourage further studies on the potential use of cocktail of inhibitors in improving the treatment of snake envenomation. Further, this study substantiates the use of M. indica as an antidote against snakebite by the traditional healers.

  • vanillic acid as a novel specific inhibitor of snake venom 5 nucleotidase a pharmacological tool in evaluating the role of the enzyme in snake envenomation
    Biochemistry, 2009
    Co-Authors: B L Dhananjaya, A Nataraju, C Raghavendra D Gowda, B K Sharath, Cletus J M Dsouza
    Abstract:

    Vanillic acid has been investigated for its inhibitory effect on Naja naja, Daboia russellii, and Trimeresurus malabaricus venom 5′-nucleotidase activity. Trimeresurus malabaricus venom 5′-nucleotidase activity was 1.3- and 8.0-fold higher than that of N. naja and D. russellii venoms, respectively. Substrate specificity studies showed that for all the venoms tested, 5′-AMP was the preferred substrate for 5′-nucleotidase. This indicates the central role of adenosine in snake envenomation. Vanillic acid selectively and specifically inhibited 5′-nucleotidase activity among several enzymes present in the three venoms tested. The inhibitor was competitive, as the inhibition was relieved by increased substrate concentration. It appears that the COOH group in vanillic acid is the determining factor for inhibition as vanillin, a structurally similar compound with respect to vanillic acid, had no inhibitory activity. This study for the first time exemplifies vanillic acid as a pharmacological tool in evaluating the role of 5′-nucleotidase in snake envenomation.

Cletus J M Dsouza - One of the best experts on this subject based on the ideXlab platform.

  • anti venom potential of aqueous extract of stem bark of mangifera indica l against Daboia russellii russell s viper venom
    Indian Journal of Biochemistry & Biophysics, 2011
    Co-Authors: B L Dhananjaya, K.s. Girish, Farhan Zameer, Cletus J M Dsouza
    Abstract:

    Several plant extracts rich in pharmacologically active compounds have shown to antagonize venom of several species. Mangifera indica has been used against snakebite by the traditional healers. However, there is paucity of scientific data in support. In this study, we evaluated the antivenom potential of aqueous extract of stem bark of M. indica against D. russellii venom-induced pharmacological effects such as life myotoxicity, edema, LD50 etc. The extract inhibited the phospholipase, protease, hyaluronidase, 5'nucleotidase, ATPase and alkaline phosphomonoesterase activities with varying IC50 values. It significantly inhibited both metalloproteases and serine proteases activities. Further, the extract significantly reduced the myotoxicity of the venom, as evident by the reduction of serum creatin kinase and lactate dehydrogenase activities. Though the extract completely inhibited in vitro PLA2 activity, it was unable to completely inhibit in situ hemolytic and in vivo edema-inducing activities, usually brought about by PLA2s. In lethality studies, co-injection of the venom preincubated with the extract showed higher protection than the independent injection of venom, followed by the extract in the mice. However, in both the cases the extract -a cocktail of inhibitors significantly increased the survival time, when compared to that of mice injected (i.p) with the venom alone. These results encourage further studies on the potential use of cocktail of inhibitors in improving the treatment of snake envenomation. Further, this study substantiates the use of M. indica as an antidote against snakebite by the traditional healers.

  • vanillic acid as a novel specific inhibitor of snake venom 5 nucleotidase a pharmacological tool in evaluating the role of the enzyme in snake envenomation
    Biochemistry, 2009
    Co-Authors: B L Dhananjaya, A Nataraju, C Raghavendra D Gowda, B K Sharath, Cletus J M Dsouza
    Abstract:

    Vanillic acid has been investigated for its inhibitory effect on Naja naja, Daboia russellii, and Trimeresurus malabaricus venom 5′-nucleotidase activity. Trimeresurus malabaricus venom 5′-nucleotidase activity was 1.3- and 8.0-fold higher than that of N. naja and D. russellii venoms, respectively. Substrate specificity studies showed that for all the venoms tested, 5′-AMP was the preferred substrate for 5′-nucleotidase. This indicates the central role of adenosine in snake envenomation. Vanillic acid selectively and specifically inhibited 5′-nucleotidase activity among several enzymes present in the three venoms tested. The inhibitor was competitive, as the inhibition was relieved by increased substrate concentration. It appears that the COOH group in vanillic acid is the determining factor for inhibition as vanillin, a structurally similar compound with respect to vanillic acid, had no inhibitory activity. This study for the first time exemplifies vanillic acid as a pharmacological tool in evaluating the role of 5′-nucleotidase in snake envenomation.

K.s. Girish - One of the best experts on this subject based on the ideXlab platform.

  • anti venom potential of aqueous extract of stem bark of mangifera indica l against Daboia russellii russell s viper venom
    Indian Journal of Biochemistry & Biophysics, 2011
    Co-Authors: B L Dhananjaya, K.s. Girish, Farhan Zameer, Cletus J M Dsouza
    Abstract:

    Several plant extracts rich in pharmacologically active compounds have shown to antagonize venom of several species. Mangifera indica has been used against snakebite by the traditional healers. However, there is paucity of scientific data in support. In this study, we evaluated the antivenom potential of aqueous extract of stem bark of M. indica against D. russellii venom-induced pharmacological effects such as life myotoxicity, edema, LD50 etc. The extract inhibited the phospholipase, protease, hyaluronidase, 5'nucleotidase, ATPase and alkaline phosphomonoesterase activities with varying IC50 values. It significantly inhibited both metalloproteases and serine proteases activities. Further, the extract significantly reduced the myotoxicity of the venom, as evident by the reduction of serum creatin kinase and lactate dehydrogenase activities. Though the extract completely inhibited in vitro PLA2 activity, it was unable to completely inhibit in situ hemolytic and in vivo edema-inducing activities, usually brought about by PLA2s. In lethality studies, co-injection of the venom preincubated with the extract showed higher protection than the independent injection of venom, followed by the extract in the mice. However, in both the cases the extract -a cocktail of inhibitors significantly increased the survival time, when compared to that of mice injected (i.p) with the venom alone. These results encourage further studies on the potential use of cocktail of inhibitors in improving the treatment of snake envenomation. Further, this study substantiates the use of M. indica as an antidote against snakebite by the traditional healers.

  • inhibition of naja naja venom hyaluronidase role in the management of poisonous bite
    Life Sciences, 2006
    Co-Authors: K.s. Girish, K. Kemparaju
    Abstract:

    Hyaluronidase is present virtually in all snake venoms and has been known as a “spreading factor.” The enzyme damages the extracellular matrix at the site of the bite, leading to severe morbidity. In this study, the benefits of inhibiting the hyaluronidase activity of Indian cobra (Naja naja) venom have been investigated. Anti-NNH1 and aristolochic acid both inhibited the in vitro activity of the purified hyaluronidase, (NNH1) and the hyaluronidase activity of whole venom in a dose-dependent manner. Both anti-NNH1 and aristolochic acid abolished the degradation of hyaluronan in human skin tissue sections by NNH1 and by whole venom. Aristolochic acid quenched the fluorescent emission of NNH1. A non-competitive mechanism of NNH1 inhibition was observed with aristolochic acid. NNH1 potentiates the toxicity of Daboia russellii VRV-PL-VIII myotoxin and hemorrhagic complex-I. However, the potentiation of toxicity was inhibited dose-dependently by anti-NNH1 and aristolochic acid. Further, mice injected with whole venom which had been preincubated with anti-NNH1/aristolochic acid, showed more than a two-fold increase in survival time, compared to mice injected with venom alone. A more moderate increase in survival time was observed when mice were injected with anti-NNH1/aristolochic acid 10 min after whole venom injection. This study illustrates the significance of venom hyaluronidase in the pathophysiology of snake venom poisoning and the therapeutic value of its inhibition.

Anthony J Bjourson - One of the best experts on this subject based on the ideXlab platform.

  • trypsin and chymotrypsin inhibitor peptides from the venom of chinese Daboia russellii siamensis
    Toxicon, 2013
    Co-Authors: Stephen Mcclean, Mingyu Ye, C Shaw, Anthony J Bjourson
    Abstract:

    Abstract Two trypsin inhibitors and one chymotrypsin inhibitor from Chinese Daboia russellii siamensis venom, denoted as CBPTI-1, CBPTI-2 and CBPTI-3 were purified, characterized and cloned from lyophilized venom-derived cDNA libraries. The N-terminus of CBPTI-1 was modified and not amenable to Edman degradation sequencing, however an internal partial sequence was found to be SGRCRGHLRRIYYNPDSNKCE. The N-termini of CBPTI-2 and CBPTI-3 were unmodified and their partial sequences were established as HDRPTFCNLAPESGRCRAH and HDRPKFCYLPADPGECMAYIRSFYYDS respectively. From cloning studies CBPTI-1 was found to consist of 66 amino acid residues, while CBPTI-2 and CBPTI-3 precursors consist of 60 amino acid residues, including 6 cysteine residues. Another cDNA sequence (CBPTI-4) was also obtained. Alignment of cDNA sequences showed that CBPTI-3 exhibited similar sequence homology to CBPTI-4 cDNA except for an 8 nucleotide deletion in the open-reading frame. CBPTI-1 and CBPTI-2 were demonstrated to be potent trypsin inhibitors, but were also shown to be effectively potent in chymotrypsin inhibition. The K i values of CBPTI-1 and CBPTI-2 for trypsin inhibition were 4.07 × 10 −7  M and 6.66 × 10 −7  M, respectively, and they were non-competitive in their activity. CBPTI-3 showed chymotrypsin inhibition activity with a K i value of 2.55 × 10 −9  M, but did not show trypsin inhibitor activity.

K. Kemparaju - One of the best experts on this subject based on the ideXlab platform.

  • inhibition of naja naja venom hyaluronidase role in the management of poisonous bite
    Life Sciences, 2006
    Co-Authors: K.s. Girish, K. Kemparaju
    Abstract:

    Hyaluronidase is present virtually in all snake venoms and has been known as a “spreading factor.” The enzyme damages the extracellular matrix at the site of the bite, leading to severe morbidity. In this study, the benefits of inhibiting the hyaluronidase activity of Indian cobra (Naja naja) venom have been investigated. Anti-NNH1 and aristolochic acid both inhibited the in vitro activity of the purified hyaluronidase, (NNH1) and the hyaluronidase activity of whole venom in a dose-dependent manner. Both anti-NNH1 and aristolochic acid abolished the degradation of hyaluronan in human skin tissue sections by NNH1 and by whole venom. Aristolochic acid quenched the fluorescent emission of NNH1. A non-competitive mechanism of NNH1 inhibition was observed with aristolochic acid. NNH1 potentiates the toxicity of Daboia russellii VRV-PL-VIII myotoxin and hemorrhagic complex-I. However, the potentiation of toxicity was inhibited dose-dependently by anti-NNH1 and aristolochic acid. Further, mice injected with whole venom which had been preincubated with anti-NNH1/aristolochic acid, showed more than a two-fold increase in survival time, compared to mice injected with venom alone. A more moderate increase in survival time was observed when mice were injected with anti-NNH1/aristolochic acid 10 min after whole venom injection. This study illustrates the significance of venom hyaluronidase in the pathophysiology of snake venom poisoning and the therapeutic value of its inhibition.