Dunaliella

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 6360 Experts worldwide ranked by ideXlab platform

Xiaoling Miao - One of the best experts on this subject based on the ideXlab platform.

  • biohydrogen production with lipid extracted Dunaliella biomass and a new strain of hyper thermophilic archaeon thermococcus eurythermalis a501
    International Journal of Hydrogen Energy, 2020
    Co-Authors: Siying Chen, Dehui Qu, Xiang Xiao, Xiaoling Miao
    Abstract:

    Abstract Economic feasibility is important for the development of microalgae bioenergy industry. Dark fermentation of microalgal residue in a biorefinery context can improve the energy conversion efficiency of biomass and reduce the cost of microalgae industry. The present study proposes a promising dark fermentation model that combines thermophilic hydrogen-producing bacteria with algal residue substrates. Lipid-extracted Dunaliella residue can greatly improve hydrogen production by Thermococcus eurythermalis A501, the yields of which are more than four times higher than with algal cells as substrates. Under the optimal conditions of 2.5 g/L algal residue concentration and a 2:1 initial volume ratio of gas to liquid, the highest hydrogen yields of 192.35 and 183.02 mL/g volatile solid (VS) with algal residue of Dunaliella primolecta and D. tertiolecta are obtained, respectively, in less than 19 h without any pretreatment. This work may provide a biorefinery approach for comprehensive utilization of microalgae resources.

  • biohydrogen production with lipid extracted Dunaliella biomass and a new strain of hyper thermophilic archaeon thermococcus eurythermalis a501
    International Journal of Hydrogen Energy, 2020
    Co-Authors: Siying Chen, Dehui Qu, Xiang Xiao, Xiaoling Miao
    Abstract:

    Abstract Economic feasibility is important for the development of microalgae bioenergy industry. Dark fermentation of microalgal residue in a biorefinery context can improve the energy conversion efficiency of biomass and reduce the cost of microalgae industry. The present study proposes a promising dark fermentation model that combines thermophilic hydrogen-producing bacteria with algal residue substrates. Lipid-extracted Dunaliella residue can greatly improve hydrogen production by Thermococcus eurythermalis A501, the yields of which are more than four times higher than with algal cells as substrates. Under the optimal conditions of 2.5 g/L algal residue concentration and a 2:1 initial volume ratio of gas to liquid, the highest hydrogen yields of 192.35 and 183.02 mL/g volatile solid (VS) with algal residue of Dunaliella primolecta and D. tertiolecta are obtained, respectively, in less than 19 h without any pretreatment. This work may provide a biorefinery approach for comprehensive utilization of microalgae resources.

Siying Chen - One of the best experts on this subject based on the ideXlab platform.

  • biohydrogen production with lipid extracted Dunaliella biomass and a new strain of hyper thermophilic archaeon thermococcus eurythermalis a501
    International Journal of Hydrogen Energy, 2020
    Co-Authors: Siying Chen, Dehui Qu, Xiang Xiao, Xiaoling Miao
    Abstract:

    Abstract Economic feasibility is important for the development of microalgae bioenergy industry. Dark fermentation of microalgal residue in a biorefinery context can improve the energy conversion efficiency of biomass and reduce the cost of microalgae industry. The present study proposes a promising dark fermentation model that combines thermophilic hydrogen-producing bacteria with algal residue substrates. Lipid-extracted Dunaliella residue can greatly improve hydrogen production by Thermococcus eurythermalis A501, the yields of which are more than four times higher than with algal cells as substrates. Under the optimal conditions of 2.5 g/L algal residue concentration and a 2:1 initial volume ratio of gas to liquid, the highest hydrogen yields of 192.35 and 183.02 mL/g volatile solid (VS) with algal residue of Dunaliella primolecta and D. tertiolecta are obtained, respectively, in less than 19 h without any pretreatment. This work may provide a biorefinery approach for comprehensive utilization of microalgae resources.

  • biohydrogen production with lipid extracted Dunaliella biomass and a new strain of hyper thermophilic archaeon thermococcus eurythermalis a501
    International Journal of Hydrogen Energy, 2020
    Co-Authors: Siying Chen, Dehui Qu, Xiang Xiao, Xiaoling Miao
    Abstract:

    Abstract Economic feasibility is important for the development of microalgae bioenergy industry. Dark fermentation of microalgal residue in a biorefinery context can improve the energy conversion efficiency of biomass and reduce the cost of microalgae industry. The present study proposes a promising dark fermentation model that combines thermophilic hydrogen-producing bacteria with algal residue substrates. Lipid-extracted Dunaliella residue can greatly improve hydrogen production by Thermococcus eurythermalis A501, the yields of which are more than four times higher than with algal cells as substrates. Under the optimal conditions of 2.5 g/L algal residue concentration and a 2:1 initial volume ratio of gas to liquid, the highest hydrogen yields of 192.35 and 183.02 mL/g volatile solid (VS) with algal residue of Dunaliella primolecta and D. tertiolecta are obtained, respectively, in less than 19 h without any pretreatment. This work may provide a biorefinery approach for comprehensive utilization of microalgae resources.

Xiang Xiao - One of the best experts on this subject based on the ideXlab platform.

  • biohydrogen production with lipid extracted Dunaliella biomass and a new strain of hyper thermophilic archaeon thermococcus eurythermalis a501
    International Journal of Hydrogen Energy, 2020
    Co-Authors: Siying Chen, Dehui Qu, Xiang Xiao, Xiaoling Miao
    Abstract:

    Abstract Economic feasibility is important for the development of microalgae bioenergy industry. Dark fermentation of microalgal residue in a biorefinery context can improve the energy conversion efficiency of biomass and reduce the cost of microalgae industry. The present study proposes a promising dark fermentation model that combines thermophilic hydrogen-producing bacteria with algal residue substrates. Lipid-extracted Dunaliella residue can greatly improve hydrogen production by Thermococcus eurythermalis A501, the yields of which are more than four times higher than with algal cells as substrates. Under the optimal conditions of 2.5 g/L algal residue concentration and a 2:1 initial volume ratio of gas to liquid, the highest hydrogen yields of 192.35 and 183.02 mL/g volatile solid (VS) with algal residue of Dunaliella primolecta and D. tertiolecta are obtained, respectively, in less than 19 h without any pretreatment. This work may provide a biorefinery approach for comprehensive utilization of microalgae resources.

  • biohydrogen production with lipid extracted Dunaliella biomass and a new strain of hyper thermophilic archaeon thermococcus eurythermalis a501
    International Journal of Hydrogen Energy, 2020
    Co-Authors: Siying Chen, Dehui Qu, Xiang Xiao, Xiaoling Miao
    Abstract:

    Abstract Economic feasibility is important for the development of microalgae bioenergy industry. Dark fermentation of microalgal residue in a biorefinery context can improve the energy conversion efficiency of biomass and reduce the cost of microalgae industry. The present study proposes a promising dark fermentation model that combines thermophilic hydrogen-producing bacteria with algal residue substrates. Lipid-extracted Dunaliella residue can greatly improve hydrogen production by Thermococcus eurythermalis A501, the yields of which are more than four times higher than with algal cells as substrates. Under the optimal conditions of 2.5 g/L algal residue concentration and a 2:1 initial volume ratio of gas to liquid, the highest hydrogen yields of 192.35 and 183.02 mL/g volatile solid (VS) with algal residue of Dunaliella primolecta and D. tertiolecta are obtained, respectively, in less than 19 h without any pretreatment. This work may provide a biorefinery approach for comprehensive utilization of microalgae resources.

Dehui Qu - One of the best experts on this subject based on the ideXlab platform.

  • biohydrogen production with lipid extracted Dunaliella biomass and a new strain of hyper thermophilic archaeon thermococcus eurythermalis a501
    International Journal of Hydrogen Energy, 2020
    Co-Authors: Siying Chen, Dehui Qu, Xiang Xiao, Xiaoling Miao
    Abstract:

    Abstract Economic feasibility is important for the development of microalgae bioenergy industry. Dark fermentation of microalgal residue in a biorefinery context can improve the energy conversion efficiency of biomass and reduce the cost of microalgae industry. The present study proposes a promising dark fermentation model that combines thermophilic hydrogen-producing bacteria with algal residue substrates. Lipid-extracted Dunaliella residue can greatly improve hydrogen production by Thermococcus eurythermalis A501, the yields of which are more than four times higher than with algal cells as substrates. Under the optimal conditions of 2.5 g/L algal residue concentration and a 2:1 initial volume ratio of gas to liquid, the highest hydrogen yields of 192.35 and 183.02 mL/g volatile solid (VS) with algal residue of Dunaliella primolecta and D. tertiolecta are obtained, respectively, in less than 19 h without any pretreatment. This work may provide a biorefinery approach for comprehensive utilization of microalgae resources.

  • biohydrogen production with lipid extracted Dunaliella biomass and a new strain of hyper thermophilic archaeon thermococcus eurythermalis a501
    International Journal of Hydrogen Energy, 2020
    Co-Authors: Siying Chen, Dehui Qu, Xiang Xiao, Xiaoling Miao
    Abstract:

    Abstract Economic feasibility is important for the development of microalgae bioenergy industry. Dark fermentation of microalgal residue in a biorefinery context can improve the energy conversion efficiency of biomass and reduce the cost of microalgae industry. The present study proposes a promising dark fermentation model that combines thermophilic hydrogen-producing bacteria with algal residue substrates. Lipid-extracted Dunaliella residue can greatly improve hydrogen production by Thermococcus eurythermalis A501, the yields of which are more than four times higher than with algal cells as substrates. Under the optimal conditions of 2.5 g/L algal residue concentration and a 2:1 initial volume ratio of gas to liquid, the highest hydrogen yields of 192.35 and 183.02 mL/g volatile solid (VS) with algal residue of Dunaliella primolecta and D. tertiolecta are obtained, respectively, in less than 19 h without any pretreatment. This work may provide a biorefinery approach for comprehensive utilization of microalgae resources.

Guanghong Wu - One of the best experts on this subject based on the ideXlab platform.

  • effects of salinity changes on the growth of Dunaliella salina and its isozyme activities of glycerol 3 phosphate dehydrogenase
    Journal of Agricultural and Food Chemistry, 2009
    Co-Authors: Hui Chen, Jianguo Jiang, Guanghong Wu
    Abstract:

    Dunaliella salina could survive in media containing a wide range of NaCl concentrations ranging from about 0.05 M to saturation (around 5.5 M). Glycerol is an important osmolyte when Dunaliella survive in various salt environments, and G3pdh is a key enzyme in glycerol metabolism. The osmotic response of D. salina was investigated by studying its cell growth, glycerol content change, and isozyme activity of glycerol-3-phosphate dehydrogenase (G3pdh) in different salinities. Results showed that 2.0 M NaCl was the optimal salinity for the growth of D. salina, in which condition the highest glycerol content of 64.02 ± 3.21 (mean ± SD) μg/mL was detected. D. salina could rapidly increase or decrease glycerol contents to adapt to hypoosmotic or hyperosmotic environments. The glycerol content declined 52.05% when salinity was changed from 2.0 to 0.5 M NaCl, and the glycerol content increased 43.61% when salinity was increased from 2.0 to 5.0 M NaCl. In the isozyme electrophoresis assay two kinds of isozymes, G3...