Eddington

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 29988 Experts worldwide ranked by ideXlab platform

Eliot Quataert - One of the best experts on this subject based on the ideXlab platform.

  • super Eddington stellar winds unifying radiative enthalpy versus flux driven models
    Monthly Notices of the Royal Astronomical Society, 2017
    Co-Authors: Eliot Quataert, Stanley P Owocki, R H D Townsend
    Abstract:

    We derive semi-analytic solutions for optically thick, super-Eddington stellar winds, induced by an assumed steady energy addition $\Delta {\dot E}$ concentrated around a near-surface heating radius $R$ in a massive star of central luminosity $L_\ast$. We show that obtaining steady wind solutions requires both that the resulting total luminosity $L_o = L_\ast + \Delta {\dot E}$ exceed the Eddington luminosity, $\Gamma_o \equiv L_o/L_{Edd} > 1$, and that the induced mass loss rate be such that the "photon-tiring" parameter $m \equiv {\dot M} GM/R L_o \le 1-1/\Gamma_o$, ensuring the luminosity is sufficient to overcome the gravitational potential $GM/R$. Our analysis unifies previous super-Eddington wind models that either: (1) assumed a direct radiative flux-driving without accounting for the advection of radiative enthalpy that can become important in such an optically thick flow; or (2) assumed that such super-Eddington outflows are adiabatic, neglecting the effects of the diffusive radiative flux. We show that these distinct models become applicable in the asymptotic limits of small vs. large values of $m \Gamma_o $, respectively. By solving the coupled differential equations for radiative diffusion and wind momentum, we obtain general solutions that effectively bridge the behaviours of these limiting models. Two key scaling results are for the terminal wind speed to escape speed, which is found to vary as $v_\infty^2/v_{esc}^2 = \Gamma_o/(1+m \Gamma_o) -1$, and for the final observed luminosity $L_{ obs}$, which for all allowed steady-solutions with $m L_{Edd}$. Our super-Eddington wind solutions have potential applicability for modeling phases of eruptive mass loss from massive stars, classical novae, and the remnants of stellar mergers.

  • super Eddington stellar winds driven by near surface energy deposition
    Monthly Notices of the Royal Astronomical Society, 2016
    Co-Authors: Eliot Quataert, Rodrigo Fernandez, Daniel Kasen, Hannah Klion, Bill Paxton
    Abstract:

    We develop analytic and numerical models of the properties of super-Eddington stellar winds, motivated by phases in stellar evolution when super-Eddington energy deposition (via, e.g., unstable fusion, wave heating, or a binary companion) heats a region near the stellar surface. This appears to occur in luminous blue variables (LBVs), Type IIn supernovae progenitors, classical novae, and X-ray bursts. We show that when the wind kinetic power exceeds Eddington, the photons are trapped and behave like a fluid. Convection does not play a significant role in the wind energy transport. The wind properties depend on the ratio of a characteristic speed in the problem vc ~ (Edot G)^{1/5} (where Edot is the heating rate) to the stellar escape speed near the heating region vesc(r_h). For vc > vesc(r_h) the wind kinetic power at large radii Edot_w ~ Edot. For vc < vesc(r_h), most of the energy is used to unbind the wind material and thus Edot_w < Edot. Multidimensional hydrodynamic simulations without radiation diffusion using FLASH and one-dimensional hydrodynamic simulations with radiation diffusion using MESA are in good agreement with the analytic predictions. The photon luminosity from the wind is itself super-Eddington but in many cases the photon luminosity is likely dominated by `internal shocks' in the wind. We discuss the application of our models to eruptive mass loss from massive stars and argue that the wind models described here can account for the broad properties of LBV outflows and the enhanced mass loss in the years prior to Type IIn core-collapse supernovae.

  • optical flares from the tidal disruption of stars by massive black holes
    Monthly Notices of the Royal Astronomical Society, 2009
    Co-Authors: Linda E Strubbe, Eliot Quataert
    Abstract:

    A star that wanders too close to a massive black hole (BH) is shredded by the BH’s tidal gravity. Stellar gas falls back to the BH at a rate initially exceeding the Eddington rate, releasing a flare of energy. In anticipation of upcoming transient surveys, we predict the light curves and spectra of tidal flares as a function of time, highlighting the unique signatures of tidal flares at optical and near-infrared wavelengths. A reasonable fraction of the gas initially bound to the BH is likely blown away when the fallback rate is super-Eddington at early times. This outflow produces an optical luminosity comparable to that of a supernova; such events have durations of � 10 days and may have been missed in supernova searches that exclude the nuclear regions of galaxies. When the fallback rate subsides below Eddington, the gas accretes onto the BH via a thin disk whose emission peaks in the UV to soft X-rays. Some of this emission is reprocessed by the unbound stellar debris, producing a spectrum of very broad emission lines (with no corresponding narrow forbidden lines). These lines are the strongest for BHs with MBH � 10 5 10 6 M⊙ and thus optical surveys are particularly sensitive to the lowest mass BHs in galactic nuclei. Calibrating our models to ROSAT and GALEX observations, we predict detection rates for Pan-STARRS, PTF, and LSST and highlight some of the observational challenges associated with studying tidal disruption events in the optical. Upcoming surveys such as Pan-STARRS should detect at least tens of events per year, and may detect many more if current models of outflows during super-Eddington accretion are reasonably accurate. These surveys will significantly improve our knowledge of stellar dynamics in galactic nuclei, the physics of super-Eddington accretion, the demography of intermediate mass BHs, and the role of tidal disruption in the growth of massive BHs.

  • optical flares from the tidal disruption of stars by massive black holes
    arXiv: Cosmology and Nongalactic Astrophysics, 2009
    Co-Authors: Linda E Strubbe, Eliot Quataert
    Abstract:

    A star that wanders too close to a massive black hole (BH) is shredded by the BH's tidal gravity. Stellar gas falls back to the BH, releasing a flare of energy. In anticipation of upcoming transient surveys, we predict the light curves and spectra of tidal flares as a function of time, highlighting the unique signatures of tidal flares in the optical and near-IR. Some of the gas initially bound to the BH is likely blown away when the fallback rate is super-Eddington at early times. This outflow produces an optical luminosity comparable to that of a supernova; such events have durations of ~10 days and may have been missed in supernova searches that exclude the nuclear regions of galaxies. When the fallback rate subsides below Eddington, the gas accretes onto the BH via a thin disk whose emission peaks in the UV to soft X-rays. Some of this emission is reprocessed by the unbound stellar debris, producing a spectrum of very broad emission lines (with no corresponding narrow forbidden lines). These lines are strongest for BHs with MBH ~ 10^5 - 10^6 Msun and thus optical surveys are particularly sensitive to the lowest mass BHs in galactic nuclei. Calibrating our models to ROSAT and GALEX observations, we predict detection rates for Pan-STARRS, PTF, and LSST and highlight observational challenges in the optical. Pan-STARRS should detect at least several events per year--many more if current theoretical models of super-Eddington outflows are correct. These surveys will significantly improve our knowledge of stellar dynamics in galactic nuclei, the physics of super-Eddington accretion, the demography of intermediate mass BHs, and the role of tidal disruption in the growth of massive BHs.

Jeanpierre Lasota - One of the best experts on this subject based on the ideXlab platform.

  • the slimming effect of advection on black hole accretion flows
    Astronomy and Astrophysics, 2016
    Co-Authors: Jeanpierre Lasota, Rebecca Lynn Vieira, Aleksander Sadowski, Ramesh Narayan, Marek A Abramowicz
    Abstract:

    Context. At super-Eddington rates accretion flows onto black holes have been described as slim (aspect ratio H/R ≲ 1) or thick (H/R> 1) discs, also known as tori or (Polish) doughnuts. The relation between the two descriptions has never been established, but it was commonly believed that at sufficiently high accretion rates slim discs inflate, becoming thick.Aims. We wish to establish under what conditions slim accretion flows become thick.Methods. We use analytical equations, numerical 1 + 1 schemes, and numerical radiative MHD codes to describe and compare various accretion flow models at very high accretion rates. Results. We find that the dominant effect of advection at high accretion rates precludes slim discs becoming thick. Conclusions. At super-Eddington rates accretion flows around black holes can always be considered slim rather than thick.

  • investigating slim disk solutions for hlx 1 in eso 243 49
    The Astrophysical Journal, 2012
    Co-Authors: Jeanpierre Lasota, O Godet, B Plazolles, Toshihiro Kawaguchi, D Barret, S A Farrell
    Abstract:

    The hyperluminous X-ray source HLX-1 in the galaxy ESO 243-49, currently the best intermediate-mass blackhole (BH) candidate, displays spectral transitions similar to those observed in Galactic BH binaries, but with aluminosity 100-1000 times higher. We investigated the X-ray properties of this unique source by fitting multiepochdata collected by Swift, XMM-Newton, and Chandra with a disk model computing spectra for a wide rangeof sub- and super-Eddington accretion rates assuming a non-spinning BH and a face-on disk (i=0 deg.). Under theseassumptions we find that the BH in HLX-1 is in the intermediate-mass range (approximately 2 x 10(exp 4) solar mass) and the accretionflow is in the sub-Eddington regime. The disk radiation efficiency is eta = 0.11 plus or minus 0.03. We also show that the source does follow the LX is proportional to T(exp 4) relation for our mass estimate. At the outburst peaks, the source radiates near the Eddington limit. The accretion rate then stays constant around 4 x 10(exp 4) solar mass yr (sup -1) for several days and then decreases exponentially. Such plateaus in the accretion rate could be evidence that enhanced mass-transfer rateis the driving outburst mechanism in HLX-1. We also report on the new outburst observed in 2011 August by theSwift X-Ray Telescope. The time of this new outburst further strengthens the approximately 1 year recurrence timescale.

  • investigating slim disk solutions for hlx 1 in eso 243 49
    arXiv: High Energy Astrophysical Phenomena, 2012
    Co-Authors: Jeanpierre Lasota, O Godet, B Plazolles, Toshihiro Kawaguchi, D Barret, S A Farrell
    Abstract:

    The hyper luminous X-ray source HLX-1 in the galaxy ESO 243-49, currently the best intermediate mass black hole candidate, displays spectral transitions similar to those observed in Galactic black hole binaries, but with a luminosity 100-1000 times higher. We investigated the X-ray properties of this unique source fitting multi-epoch data collected by Swift, XMM-Newton & Chandra with a disk model computing spectra for a wide range of sub- and super-Eddington accretion rates assuming a non-spinning black hole and a face-on disk (i = 0 deg). Under these assumptions we find that the black hole in HLX-1 is in the intermediate mass range (~2 x 10^4 M_odot) and the accretion flow is in the sub-Eddington regime. The disk radiation efficiency is eta = 0.11 +/-0.03. We also show that the source does follow the L_X ~ T^4 relation for our mass estimate. At the outburst peaks, the source radiates near the Eddington limit. The accretion rate then stays constant around 4 x 10^(-4) M_odot yr^(-1) for several days and then decreases exponentially. Such "plateaus" in the accretion rate could be evidence that enhanced mass transfer rate is the driving outburst mechanism in HLX-1. We also report on the new outburst observed in August 2011 by the Swift-X-ray Telescope. The time of this new outburst further strengthens the ~1 year recurrence timescale.

  • radio loudness of active galactic nuclei observational facts and theoretical implications
    The Astrophysical Journal, 2007
    Co-Authors: Marek Sikora, ł Stawarz, Jeanpierre Lasota
    Abstract:

    We investigate how the total radio luminosity of AGN-powered radio sources depends on their accretion luminosity and the central black hole mass. Our studies cover about 7 orders of magnitude in accretion luminosity (expressed in Eddington units, i.e., as Eddington ratios) and the full range of AGN black hole masses. We find that AGNs form two distinct and well-separated sequences on the radio-loudness-Eddington-ratio plane. The upper sequence is formed by radio-selected AGNs, and the lower sequence contains mainly optically selected objects. Whereas an apparent gap between the two sequences may be an artifact of selection effects, the sequences themselves mark the real upper bounds of radio loudness of two distinct populations of AGNs: those hosted respectively by elliptical and disk galaxies. Both sequences show the same dependence of the radio loudness on the Eddington ratio (an increase with decreasing Eddington ratio), which suggests that the normalization of this dependence is determined by the black hole spin. This implies that central black holes in giant elliptical galaxies have (on average) much larger spins than black holes in spiral/disk galaxies. This galaxy-morphology-related radio dichotomy breaks down at high accretion rates where the dominant fraction of luminous quasars hosted by elliptical galaxies is radio quiet. This led to speculations in the literature that formation of powerful jets at high accretion rates is intermittent and related to switches between two disk accretion modes, as directly observed in some black hole X-ray binaries. We argue that such intermittency can be reconciled with the spin paradigm, provided that successful formation of relativistic jets by rotating black holes requires collimation by MHD outflows from accretion disks.

Thomas P Sotiriou - One of the best experts on this subject based on the ideXlab platform.

  • surface singularities in Eddington inspired born infeld gravity
    Physical Review Letters, 2012
    Co-Authors: Paolo Pani, Thomas P Sotiriou
    Abstract:

    Eddington-inspired Born-Infeld gravity was recently proposed as an alternative to general relativity that offers a resolution of spacetime singularities. The theory differs from Einstein's gravity only inside matter due to nondynamical degrees of freedom, and it is compatible with all current observations. We show that the theory is reminiscent of Palatini f(R) gravity and that it shares the same pathologies, such as curvature singularities at the surface of polytropic stars and unacceptable Newtonian limit. This casts serious doubt on its viability.

Jianmin Wang - One of the best experts on this subject based on the ideXlab platform.

  • a limit relation between black hole mass and hβ width testing super Eddington accretion in active galactic nuclei
    The Astronomical Journal, 2003
    Co-Authors: Jianmin Wang
    Abstract:

    We show that there is a limit relation between the black hole mass (MBH) and the width at half-maximum (υFWHM) of Hβ for active galactic nuclei (AGNs) with super-Eddington accretion rates. When a black hole has a super-Eddington accretion rate, the empirical relation derived from reverberation mapping can be applied in two possible ways. First, it reduces to a relation between the black hole mass and the size of the broad-line region because of photon-trapping effects inside the accretion disk. For the empirical reverberation relation of Kaspi et al., we obtain the limit relation MBH = (2.9–12.6) × 106 [vFWHM/(103 km s-1)]6.67M⊙, called the Eddington limit. Second, the Eddington limit luminosity will be relaxed if the trapped photons can escape from the magnetized super-Eddington accretion disk via the photon bubble instability, and the size of the broad-line region will be enlarged according to the empirical reverberation relation, leading to a relatively narrow Hβ width. We call this the Begelman limit. Using this limit relation, we searched 164 AGNs for super-Eddington accretion. We find that most of them are well confined by the Eddington limit relation—that is, most have sub-Eddington accretion rates—but there are a handful of objects located between the Eddington and Begelman limit lines; they may be candidate super-Eddington accretors in a hybrid structure of photon trapping and photon bubble instability. The maximum Hβ width is in the range (3.0–3.8) × 10 3 km s-1 for the most massive black holes with super-Eddington accretion rates among AGNs. We suggest that the FWHM(Hβ)-MBH relation is a reliable and convenient method to test whether a source is super-Eddington and useful to probe the structure of the super-Eddington accretion process.

  • a limit relation between black hole mass and h beta width testing super Eddington accretion in active galactic nuclei
    arXiv: Astrophysics, 2003
    Co-Authors: Jianmin Wang
    Abstract:

    (abbreviated) We show that there is a limit relation between the black hole mass and the width at the half maximum of H$\beta$ for active galactic nuclei (AGNs) with super-Eddington accretion rates. When a black hole has a super-Eddington accretion rate, the empirical relation of reverberation mapping has two possible ways. First, it reduces to a relation between the black hole mass and the size of the broad line region due to the photon trapping effects inside the accretion disk. For the Kaspi et al.'s empirical reverberation relation, we get the limit relation as $M_{\rm BH}=(2.9 - 12.6)\times 10^6M_{\odot} (\upsilon_{\rm FWHM}/10^3{\rm km s^{-1}})^{6.67}$, called as the Eddington limit. Second, the Eddington limit luminosity will be relaxed if the trapped photons can escape from the magnetized super-Eddington accretion disk via the photon bubble instability, and the size of the broad line region will be enlarged according to the empirical reverberation relation, leading to a relatively narrow width of H$\beta$. We call this the Begelman limit. Super-Eddington accretions in a sample composed of 164 AGNs have been searched by this limit relation. We find there are a handful of objects locate between the Eddington and Begelman limit lines, they may be candidates of super-Eddington accretors in a hybrid structure of photon trapping and photon bubble instability. The maximum width of H$\beta$ is in the reange of $(3.0 - 3.8)\times 10^3$ km s$^{-1}$ for the maximum mass black holes with super-Eddington accretion rates among AGNs. We suggest that this limit relation is more reliable and convenient to test whether a source is super-Eddington and useful to probe the structure of the super-Eddington accretion process.

Xiaobo Dong - One of the best experts on this subject based on the ideXlab platform.

  • coexistence of gravitationally bound and radiation driven c iv emission line regions in active galactic nuclei
    The Astrophysical Journal, 2011
    Co-Authors: Huiyuan Wang, T W Wang, Hongyan Zhou, Bo Liu, Jianguo Wang, Weimin Yuan, Xiaobo Dong
    Abstract:

    There are mutually contradictory views in the literature of the kinematics and structure of high-ionization line (e. g., C IV) emitting regions in active galactic nuclei (AGNs). Two kinds of broad emission line region (BELR) models have been proposed, outflow and gravitationally-bound BELR, which are supported, respectively, by blueshift of the C IV line and reverberation mapping observations. To reconcile these two apparently different models, we present a detailed comparison study between the C IV and Mg II lines using a sample of AGNs selected from the Sloan Digital Sky Survey. We find that the kinematics of the C IV region is different from that of Mg II, which is thought to be controlled by gravity. A strong correlation is found between the blueshift and asymmetry of the C IV profile and the Eddington ratio. This provides strong observational support for the postulation that the outflow is driven by radiation pressure. In particular, we find robust evidence that the C IV line region is largely dominated by outflow at high Eddington ratios, while it is primarily gravitationally-bounded at low Eddington ratios. Our results indicate that these two emitting regions coexist in most AGNs. The emission strength from these two gases varies smoothly with Eddington ratio in opposite ways. This explanation naturally reconciles the apparently contradictory views proposed in previous studies. Finally, candidate models are discussed which can account for both the enhancement of outflow emission and suppression of normal BEL in AGNs with high Eddington ratios.

  • coexistence of gravitationally bound and radiation driven civ emission line regions in active galactic nuclei
    arXiv: Cosmology and Nongalactic Astrophysics, 2011
    Co-Authors: Huiyuan Wang, T W Wang, Hongyan Zhou, Bo Liu, Jianguo Wang, Weimin Yuan, Xiaobo Dong
    Abstract:

    There are mutually contradictory views in the literature of the kinematics and structure of high-ionization line (e.g. CIV) emitting regions in active galactic nuclei (AGNs). Two kinds of broad emission line region (BELR) models have been proposed, outflow and gravitationally bound BELR, which are supported respectively by blueshift of the CIV line and reverberation mapping observations. To reconcile these two apparently different models, we present a detailed comparison study between the CIV and MgII lines using a sample of AGNs selected from the Sloan Digital Sky Survey. We find that the kinematics of the CIV region is different from that of MgII, which is thought to be controlled by gravity. A strong correlation is found between the blueshift and asymmetry of the CIV profile and the Eddington ratio. This provides strong observational support for the postulation that the outflow is driven by radiation pressure. In particular, we find robust evidence that the CIV line region is largely dominated by outflow at high Eddington ratios, while it is primarily gravitationally bounded at low Eddington ratios. Our results indicate that these two emitting regions coexist in most of AGNs. The emission strength from these two gases varies smoothly with Eddington ratio in opposite ways. This explanation naturally reconciles the apparently contradictory views proposed in previous studies. Finally, candidate models are discussed which can account for both, the enhancement of outflow emission and suppression of normal BEL, in AGN with high Eddington ratios.