Faradays Constant

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 6 Experts worldwide ranked by ideXlab platform

Bruce E. Logan - One of the best experts on this subject based on the ideXlab platform.

  • Capacitive Mixing Power Production from Salinity Gradient Energy Enhanced through Exoelectrogen‐Generated Ionic Currents
    2016
    Co-Authors: Marta C. Hatzell, D. Cusick, Bruce E. Logan
    Abstract:

    1. Increased ion transport to capacitive electrodes Ion transport is dictated by the Nernst‐Planck‐Poisson (NPP)  model. Thus,  the ion flux is due to  ion  concentration  gradients  (diffusion)  and  potential  gradients (electromigration). Previous  capacitive  deionization  models  (the  opposite  process  to CapMix)  have described a simplified approach to calculate these fluxes[34]. The transport of ions due to the electrostatic driving forces is calculated through Jୡ୦ୟ୰ ୣ ൌ k ∙ c ∙ ∆ϕ୫୪  (Eq. 1s) where Jcharge  is the  ion flux (mol m–2 s–1),  k  is the mass transfer coefficient,  c  is the  ion concentration in the solution,  and Δφmtl voltage gradient divided by the thermal voltage (VT=RT F–1). Likewise,  ion transport in an electrochemical system such as the MFC can be estimated if the current passing through the external circuit is known as: Jୡ ୰ ൌ iAnF  (Eq. 2s) where Jcur is the ionic current induced by the electrical current (i),  A is the cross sectional area,  n is the (mol e –  ∙  mol–1),  and F is Faradays Constant. Thus,  for a pure CDP process, the flux of  ions may be dictated by  Jcharge,  and  for  the CMFC  flux  is  approximated by Jcharge+Jcur (Fig 5s). While this  approximation  for  electromigration  plays  a  significant  role  in  the enhanced voltage,  concentration gradients also may be important. For CDP,  while there is no need  for  an external power  supply,  the  voltage window  remains  limited by  the

Marta C. Hatzell - One of the best experts on this subject based on the ideXlab platform.

  • Capacitive Mixing Power Production from Salinity Gradient Energy Enhanced through Exoelectrogen‐Generated Ionic Currents
    2016
    Co-Authors: Marta C. Hatzell, D. Cusick, Bruce E. Logan
    Abstract:

    1. Increased ion transport to capacitive electrodes Ion transport is dictated by the Nernst‐Planck‐Poisson (NPP)  model. Thus,  the ion flux is due to  ion  concentration  gradients  (diffusion)  and  potential  gradients (electromigration). Previous  capacitive  deionization  models  (the  opposite  process  to CapMix)  have described a simplified approach to calculate these fluxes[34]. The transport of ions due to the electrostatic driving forces is calculated through Jୡ୦ୟ୰ ୣ ൌ k ∙ c ∙ ∆ϕ୫୪  (Eq. 1s) where Jcharge  is the  ion flux (mol m–2 s–1),  k  is the mass transfer coefficient,  c  is the  ion concentration in the solution,  and Δφmtl voltage gradient divided by the thermal voltage (VT=RT F–1). Likewise,  ion transport in an electrochemical system such as the MFC can be estimated if the current passing through the external circuit is known as: Jୡ ୰ ൌ iAnF  (Eq. 2s) where Jcur is the ionic current induced by the electrical current (i),  A is the cross sectional area,  n is the (mol e –  ∙  mol–1),  and F is Faradays Constant. Thus,  for a pure CDP process, the flux of  ions may be dictated by  Jcharge,  and  for  the CMFC  flux  is  approximated by Jcharge+Jcur (Fig 5s). While this  approximation  for  electromigration  plays  a  significant  role  in  the enhanced voltage,  concentration gradients also may be important. For CDP,  while there is no need  for  an external power  supply,  the  voltage window  remains  limited by  the

J. R. Deepa - One of the best experts on this subject based on the ideXlab platform.

  • Effective removal of Cobalt(II) ions from aqueous solutions and nuclear industry wastewater using sulfhydryl and carboxyl functionalised magnetite nanocellulose composite: batch adsorption studies
    2018
    Co-Authors: T. S. Anirudhan, F. Shainy, J. R. Deepa
    Abstract:

    A new adsorbent sulfhydryl and carboxyl functionalized magnetite nanocellulose composite [(MB-IA)-g-MNCC] was synthesized by graft co-polymerization of itaconic acid onto magnetite nanocellulose (MNCC) using EGDMA as cross linking agent and K2S2O8 as free radical initiator. The adsorption occurs maximum in the pH 6.5. The best fitted kinetic model was found to be pseudo-second-order kinetics. Therefore the mechanism of Co(II) adsorption onto (MB-IA)-g-MNCC follows ion exchange followed by complexation. The Langmuir model was the best fitted isotherm model for the adsorption of Co(II) onto the (MB-IA)-g-MNCC. Simulated nuclear power plant coolant water samples were also treated with (MB-IA)-g-MNCC to demonstrate its efficiency for the removal of Co(II) from aqueous solutions in the presence of other metal ions. To recover the adsorbed Co(II) ions and also to regenerate the adsorbent to its original state 0.1 M HCl was used as suitable desorbing agent. Six cycles of adsorption-desorption experiments were conducted and was found that adsorption capacity of (MB-IA)-g-MNCC has been decreased from 97.5% in the first cycle to 84.7% in the sixth cycle. Recovery of Co(II) using 0.1 M HCl decreased from 93.2% in the first cycle to 79.3% in the sixth cycle. Abbreviations: T: absolute temperature; qe: amount adsorbed at equilibrium; qt: amount adsorbed at time t; CELL: cellulose; Co: cobalt; Ce: concentration at equilibrium; CHCl: concentration of HCl; CNaOH: concentration of NaOH; CA: concentrations of acid; CB: concentrations of base; Wg: dry weight of composite; Wi: dry weight of MNCC; DS: energy dispersive spectra; EGDMA: ethylene glycol dimethacrylate; Ce: equilibrium concentration; KL: equilibrium Constant; F: Faradays Constant; FTIR: Fourier transform infrared spectra; ΔGo: free energy change; KF: Freundlich adsorption capacity; 1/n: Freundlich Constant; R: gas Constant; D: grafting density; ECo: initial concentration; IA: itaconic acid; IA-g-MNCC: itaconic acid-grafted-magnetite nanocellulose composite; b: Langmuir Constant; MNCC: magnetite nanocellulose composite; Q0: Maximum adsorption capacity; (MB-IA)-g-MNCC: 2-mercaptobenzamide modified itaconic acid-grafted-magnetite nanocellulose composite; NC: nanocellulose; pHpzc: Point of zero charge; K2S2O8: potassium peroxy sulphate; k1: pseudo-first-order rate Constant; k2: pseudo-second-order rate Constant; SEM: scanning Electron Microscope; bs: Sips adsorption capacity; Qs: Sips maximum adsorption capacity; ΔH°: standard enthalpy change; ΔS°: standard entropy change; A: surface area; σ0: surface charge density; 1/ns: surface heterogeneity factor; VSM: vibrating sample magnetometer; V: volume of solution; W: weight of (MB-IA)-g-MNCC; Mcomposite: weight of the composite; XRD: X-ray diffraction

D. Cusick - One of the best experts on this subject based on the ideXlab platform.

  • Capacitive Mixing Power Production from Salinity Gradient Energy Enhanced through Exoelectrogen‐Generated Ionic Currents
    2016
    Co-Authors: Marta C. Hatzell, D. Cusick, Bruce E. Logan
    Abstract:

    1. Increased ion transport to capacitive electrodes Ion transport is dictated by the Nernst‐Planck‐Poisson (NPP)  model. Thus,  the ion flux is due to  ion  concentration  gradients  (diffusion)  and  potential  gradients (electromigration). Previous  capacitive  deionization  models  (the  opposite  process  to CapMix)  have described a simplified approach to calculate these fluxes[34]. The transport of ions due to the electrostatic driving forces is calculated through Jୡ୦ୟ୰ ୣ ൌ k ∙ c ∙ ∆ϕ୫୪  (Eq. 1s) where Jcharge  is the  ion flux (mol m–2 s–1),  k  is the mass transfer coefficient,  c  is the  ion concentration in the solution,  and Δφmtl voltage gradient divided by the thermal voltage (VT=RT F–1). Likewise,  ion transport in an electrochemical system such as the MFC can be estimated if the current passing through the external circuit is known as: Jୡ ୰ ൌ iAnF  (Eq. 2s) where Jcur is the ionic current induced by the electrical current (i),  A is the cross sectional area,  n is the (mol e –  ∙  mol–1),  and F is Faradays Constant. Thus,  for a pure CDP process, the flux of  ions may be dictated by  Jcharge,  and  for  the CMFC  flux  is  approximated by Jcharge+Jcur (Fig 5s). While this  approximation  for  electromigration  plays  a  significant  role  in  the enhanced voltage,  concentration gradients also may be important. For CDP,  while there is no need  for  an external power  supply,  the  voltage window  remains  limited by  the

T. S. Anirudhan - One of the best experts on this subject based on the ideXlab platform.

  • Effective removal of Cobalt(II) ions from aqueous solutions and nuclear industry wastewater using sulfhydryl and carboxyl functionalised magnetite nanocellulose composite: batch adsorption studies
    2018
    Co-Authors: T. S. Anirudhan, F. Shainy, J. R. Deepa
    Abstract:

    A new adsorbent sulfhydryl and carboxyl functionalized magnetite nanocellulose composite [(MB-IA)-g-MNCC] was synthesized by graft co-polymerization of itaconic acid onto magnetite nanocellulose (MNCC) using EGDMA as cross linking agent and K2S2O8 as free radical initiator. The adsorption occurs maximum in the pH 6.5. The best fitted kinetic model was found to be pseudo-second-order kinetics. Therefore the mechanism of Co(II) adsorption onto (MB-IA)-g-MNCC follows ion exchange followed by complexation. The Langmuir model was the best fitted isotherm model for the adsorption of Co(II) onto the (MB-IA)-g-MNCC. Simulated nuclear power plant coolant water samples were also treated with (MB-IA)-g-MNCC to demonstrate its efficiency for the removal of Co(II) from aqueous solutions in the presence of other metal ions. To recover the adsorbed Co(II) ions and also to regenerate the adsorbent to its original state 0.1 M HCl was used as suitable desorbing agent. Six cycles of adsorption-desorption experiments were conducted and was found that adsorption capacity of (MB-IA)-g-MNCC has been decreased from 97.5% in the first cycle to 84.7% in the sixth cycle. Recovery of Co(II) using 0.1 M HCl decreased from 93.2% in the first cycle to 79.3% in the sixth cycle. Abbreviations: T: absolute temperature; qe: amount adsorbed at equilibrium; qt: amount adsorbed at time t; CELL: cellulose; Co: cobalt; Ce: concentration at equilibrium; CHCl: concentration of HCl; CNaOH: concentration of NaOH; CA: concentrations of acid; CB: concentrations of base; Wg: dry weight of composite; Wi: dry weight of MNCC; DS: energy dispersive spectra; EGDMA: ethylene glycol dimethacrylate; Ce: equilibrium concentration; KL: equilibrium Constant; F: Faradays Constant; FTIR: Fourier transform infrared spectra; ΔGo: free energy change; KF: Freundlich adsorption capacity; 1/n: Freundlich Constant; R: gas Constant; D: grafting density; ECo: initial concentration; IA: itaconic acid; IA-g-MNCC: itaconic acid-grafted-magnetite nanocellulose composite; b: Langmuir Constant; MNCC: magnetite nanocellulose composite; Q0: Maximum adsorption capacity; (MB-IA)-g-MNCC: 2-mercaptobenzamide modified itaconic acid-grafted-magnetite nanocellulose composite; NC: nanocellulose; pHpzc: Point of zero charge; K2S2O8: potassium peroxy sulphate; k1: pseudo-first-order rate Constant; k2: pseudo-second-order rate Constant; SEM: scanning Electron Microscope; bs: Sips adsorption capacity; Qs: Sips maximum adsorption capacity; ΔH°: standard enthalpy change; ΔS°: standard entropy change; A: surface area; σ0: surface charge density; 1/ns: surface heterogeneity factor; VSM: vibrating sample magnetometer; V: volume of solution; W: weight of (MB-IA)-g-MNCC; Mcomposite: weight of the composite; XRD: X-ray diffraction