Felbinac

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 279 Experts worldwide ranked by ideXlab platform

Shivaputra A. Patil - One of the best experts on this subject based on the ideXlab platform.

  • Immobilizing biogenically synthesized palladium nanoparticles on cellulose support as a green and sustainable dip catalyst for cross-coupling reaction
    Cellulose, 2020
    Co-Authors: Manjunatha Kempasiddaiah, Vishal Kandathil, Ramesh B. Dateer, B. S. Sasidhar, Shivaputra A. Patil
    Abstract:

    Biowaste resources are the promising renewable raw materials for green and economical purpose. In this context, usage of cellulose fibers as linear and flexible bio-polymer derived from waste lignocellulosic biomass has gained much attention in various applications due to their extensive properties such as eco-friendly, low cost, easy availability, low energy consumption, bio-degradability, high tensile strength and could be recyclable compared to other synthetic fibers those are expensive and non-decomposable in nature. In the present work, biogenically prepared palladium nanoparticles from waste banana pseudostem extract are immobilized on cellulose fibers, isolated from waste banana pseudostem as dip catalyst through green protocol for the first time. The synthesized new dip catalyst was characterized by ATR-IR, FE-SEM, EDS, ICP-OES, HR-TEM, p -XRD, TG/DTA, UV–Vis, GC–MS, XPS and BET surface area analysis. Catalytic potential and reusability of newly developed dip catalyst has been studied in Suzuki–Miyaura cross-coupling reactions for the synthesis of various functional groups tolerated biaryls for practical applications. In addition, an analgesic non-steroidal anti-inflammatory drug molecule Felbinac was synthesized in greener reaction conditions by using dip catalyst with good yield.

  • Immobilizing biogenically synthesized palladium nanoparticles on cellulose support as a green and sustainable dip catalyst for cross-coupling reaction
    Cellulose, 2020
    Co-Authors: Manjunatha Kempasiddaiah, Vishal Kandathil, Ramesh B. Dateer, B. S. Sasidhar, Shivaputra A. Patil
    Abstract:

    Biowaste resources are the promising renewable raw materials for green and economical purpose. In this context, usage of cellulose fibers as linear and flexible bio-polymer derived from waste lignocellulosic biomass has gained much attention in various applications due to their extensive properties such as eco-friendly, low cost, easy availability, low energy consumption, bio-degradability, high tensile strength and could be recyclable compared to other synthetic fibers those are expensive and non-decomposable in nature. In the present work, biogenically prepared palladium nanoparticles from waste banana pseudostem extract are immobilized on cellulose fibers, isolated from waste banana pseudostem as dip catalyst through green protocol for the first time. The synthesized new dip catalyst was characterized by ATR-IR, FE-SEM, EDS, ICP-OES, HR-TEM, p -XRD, TG/DTA, UV–Vis, GC–MS, XPS and BET surface area analysis. Catalytic potential and reusability of newly developed dip catalyst has been studied in Suzuki–Miyaura cross-coupling reactions for the synthesis of various functional groups tolerated biaryls for practical applications. In addition, an analgesic non-steroidal anti-inflammatory drug molecule Felbinac was synthesized in greener reaction conditions by using dip catalyst with good yield.

Asif Husain - One of the best experts on this subject based on the ideXlab platform.

  • Synthesis, molecular docking with COX 1& II enzyme, ADMET screening and in vivo anti-inflammatory activity of oxadiazole, thiadiazole and triazole analogs of Felbinac
    Elsevier, 2018
    Co-Authors: Shah Alam Khan, Monawwar S. Imam, Aftab Ahmad, Syed Hussain Basha, Asif Husain
    Abstract:

    Based on the core structure of Felbinac drug, three series (4a–d, 5a–d and 6a–n) of five membered heterocyclic derivatives containing three heteroatoms were designed and synthesized starting from Felbinac. In the rational design of the target molecules, the biphenyl ring along with the methylene bridge of Felbinac was retained while the carboxyl group was substituted with biologically active substituents like 1,2,4-triazole, 1,3,4-thiadiazole and 1,3,4-oxadiazole, with an intent to obtain novel, better and safer anti-inflammatory agents with improved efficacy. The prepared molecules were then investigated for their anti-inflammatory, ulcerogenicity and analgesic activity in experimental animals. The tested compounds exhibited varying degrees of inflammatory activity (25.21–72.87%), analgesic activity (27.50–65.24%) and severity index on gastric mucosa in the range of 0.20–0.80 in comparison to positive control Felbinac (62.44%, 68.70% and 1.5, respectively). Among all the prepared compounds, 2-(biphenyl-4-ylmethyl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (6c) emerged as the most potent NSAID compound exhibiting the highest anti-inflammatory activity (72.87% inhibition) and analgesic activity (65.24%) along with the least severity index on gastric mucosa (0.20). Further, molecular docking on cyclooxygenase and in silico ADME-Toxicity prediction studies also supported the experimental biological results and indicated that 6c has a potential to serve as a drug candidate or lead compound for developing novel anti-inflammatory and analgesic therapeutic agent(s) with minimum toxicity on gastric mucosa. Keywords: Felbinac, Oxadiazole, Triazole, Thiadiazole, Anti-inflammatory, Molecular dockin

  • Synthesis, molecular docking with COX 1& II enzyme, ADMET screening and in vivo anti-inflammatory activity of oxadiazole, thiadiazole and triazole analogs of Felbinac
    Journal of Saudi Chemical Society, 2018
    Co-Authors: Shah Alam Khan, Aftab Ahmad, Syed Hussain Basha, S. Monawwar Imam, Asif Husain
    Abstract:

    Abstract Based on the core structure of Felbinac drug, three series ( 4a – d, 5a – d and 6a – n ) of five membered heterocyclic derivatives containing three heteroatoms were designed and synthesized starting from Felbinac. In the rational design of the target molecules, the biphenyl ring along with the methylene bridge of Felbinac was retained while the carboxyl group was substituted with biologically active substituents like 1,2,4-triazole, 1,3,4-thiadiazole and 1,3,4-oxadiazole, with an intent to obtain novel, better and safer anti-inflammatory agents with improved efficacy. The prepared molecules were then investigated for their anti-inflammatory, ulcerogenicity and analgesic activity in experimental animals. The tested compounds exhibited varying degrees of inflammatory activity (25.21–72.87%), analgesic activity (27.50–65.24%) and severity index on gastric mucosa in the range of 0.20–0.80 in comparison to positive control Felbinac (62.44%, 68.70% and 1.5, respectively). Among all the prepared compounds, 2-(biphenyl-4-ylmethyl)-5-(4-chlorophenyl)-1,3,4-oxadiazole ( 6c ) emerged as the most potent NSAID compound exhibiting the highest anti-inflammatory activity (72.87% inhibition) and analgesic activity (65.24%) along with the least severity index on gastric mucosa (0.20). Further, molecular docking on cyclooxygenase and in silico ADME-Toxicity prediction studies also supported the experimental biological results and indicated that 6c has a potential to serve as a drug candidate or lead compound for developing novel anti-inflammatory and analgesic therapeutic agent(s) with minimum toxicity on gastric mucosa.

Manjunatha Kempasiddaiah - One of the best experts on this subject based on the ideXlab platform.

  • Immobilizing biogenically synthesized palladium nanoparticles on cellulose support as a green and sustainable dip catalyst for cross-coupling reaction
    Cellulose, 2020
    Co-Authors: Manjunatha Kempasiddaiah, Vishal Kandathil, Ramesh B. Dateer, B. S. Sasidhar, Shivaputra A. Patil
    Abstract:

    Biowaste resources are the promising renewable raw materials for green and economical purpose. In this context, usage of cellulose fibers as linear and flexible bio-polymer derived from waste lignocellulosic biomass has gained much attention in various applications due to their extensive properties such as eco-friendly, low cost, easy availability, low energy consumption, bio-degradability, high tensile strength and could be recyclable compared to other synthetic fibers those are expensive and non-decomposable in nature. In the present work, biogenically prepared palladium nanoparticles from waste banana pseudostem extract are immobilized on cellulose fibers, isolated from waste banana pseudostem as dip catalyst through green protocol for the first time. The synthesized new dip catalyst was characterized by ATR-IR, FE-SEM, EDS, ICP-OES, HR-TEM, p -XRD, TG/DTA, UV–Vis, GC–MS, XPS and BET surface area analysis. Catalytic potential and reusability of newly developed dip catalyst has been studied in Suzuki–Miyaura cross-coupling reactions for the synthesis of various functional groups tolerated biaryls for practical applications. In addition, an analgesic non-steroidal anti-inflammatory drug molecule Felbinac was synthesized in greener reaction conditions by using dip catalyst with good yield.

  • Immobilizing biogenically synthesized palladium nanoparticles on cellulose support as a green and sustainable dip catalyst for cross-coupling reaction
    Cellulose, 2020
    Co-Authors: Manjunatha Kempasiddaiah, Vishal Kandathil, Ramesh B. Dateer, B. S. Sasidhar, Shivaputra A. Patil
    Abstract:

    Biowaste resources are the promising renewable raw materials for green and economical purpose. In this context, usage of cellulose fibers as linear and flexible bio-polymer derived from waste lignocellulosic biomass has gained much attention in various applications due to their extensive properties such as eco-friendly, low cost, easy availability, low energy consumption, bio-degradability, high tensile strength and could be recyclable compared to other synthetic fibers those are expensive and non-decomposable in nature. In the present work, biogenically prepared palladium nanoparticles from waste banana pseudostem extract are immobilized on cellulose fibers, isolated from waste banana pseudostem as dip catalyst through green protocol for the first time. The synthesized new dip catalyst was characterized by ATR-IR, FE-SEM, EDS, ICP-OES, HR-TEM, p -XRD, TG/DTA, UV–Vis, GC–MS, XPS and BET surface area analysis. Catalytic potential and reusability of newly developed dip catalyst has been studied in Suzuki–Miyaura cross-coupling reactions for the synthesis of various functional groups tolerated biaryls for practical applications. In addition, an analgesic non-steroidal anti-inflammatory drug molecule Felbinac was synthesized in greener reaction conditions by using dip catalyst with good yield.

Shah Alam Khan - One of the best experts on this subject based on the ideXlab platform.

  • Synthesis, molecular docking with COX 1& II enzyme, ADMET screening and in vivo anti-inflammatory activity of oxadiazole, thiadiazole and triazole analogs of Felbinac
    Elsevier, 2018
    Co-Authors: Shah Alam Khan, Monawwar S. Imam, Aftab Ahmad, Syed Hussain Basha, Asif Husain
    Abstract:

    Based on the core structure of Felbinac drug, three series (4a–d, 5a–d and 6a–n) of five membered heterocyclic derivatives containing three heteroatoms were designed and synthesized starting from Felbinac. In the rational design of the target molecules, the biphenyl ring along with the methylene bridge of Felbinac was retained while the carboxyl group was substituted with biologically active substituents like 1,2,4-triazole, 1,3,4-thiadiazole and 1,3,4-oxadiazole, with an intent to obtain novel, better and safer anti-inflammatory agents with improved efficacy. The prepared molecules were then investigated for their anti-inflammatory, ulcerogenicity and analgesic activity in experimental animals. The tested compounds exhibited varying degrees of inflammatory activity (25.21–72.87%), analgesic activity (27.50–65.24%) and severity index on gastric mucosa in the range of 0.20–0.80 in comparison to positive control Felbinac (62.44%, 68.70% and 1.5, respectively). Among all the prepared compounds, 2-(biphenyl-4-ylmethyl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (6c) emerged as the most potent NSAID compound exhibiting the highest anti-inflammatory activity (72.87% inhibition) and analgesic activity (65.24%) along with the least severity index on gastric mucosa (0.20). Further, molecular docking on cyclooxygenase and in silico ADME-Toxicity prediction studies also supported the experimental biological results and indicated that 6c has a potential to serve as a drug candidate or lead compound for developing novel anti-inflammatory and analgesic therapeutic agent(s) with minimum toxicity on gastric mucosa. Keywords: Felbinac, Oxadiazole, Triazole, Thiadiazole, Anti-inflammatory, Molecular dockin

  • Synthesis, molecular docking with COX 1& II enzyme, ADMET screening and in vivo anti-inflammatory activity of oxadiazole, thiadiazole and triazole analogs of Felbinac
    Journal of Saudi Chemical Society, 2018
    Co-Authors: Shah Alam Khan, Aftab Ahmad, Syed Hussain Basha, S. Monawwar Imam, Asif Husain
    Abstract:

    Abstract Based on the core structure of Felbinac drug, three series ( 4a – d, 5a – d and 6a – n ) of five membered heterocyclic derivatives containing three heteroatoms were designed and synthesized starting from Felbinac. In the rational design of the target molecules, the biphenyl ring along with the methylene bridge of Felbinac was retained while the carboxyl group was substituted with biologically active substituents like 1,2,4-triazole, 1,3,4-thiadiazole and 1,3,4-oxadiazole, with an intent to obtain novel, better and safer anti-inflammatory agents with improved efficacy. The prepared molecules were then investigated for their anti-inflammatory, ulcerogenicity and analgesic activity in experimental animals. The tested compounds exhibited varying degrees of inflammatory activity (25.21–72.87%), analgesic activity (27.50–65.24%) and severity index on gastric mucosa in the range of 0.20–0.80 in comparison to positive control Felbinac (62.44%, 68.70% and 1.5, respectively). Among all the prepared compounds, 2-(biphenyl-4-ylmethyl)-5-(4-chlorophenyl)-1,3,4-oxadiazole ( 6c ) emerged as the most potent NSAID compound exhibiting the highest anti-inflammatory activity (72.87% inhibition) and analgesic activity (65.24%) along with the least severity index on gastric mucosa (0.20). Further, molecular docking on cyclooxygenase and in silico ADME-Toxicity prediction studies also supported the experimental biological results and indicated that 6c has a potential to serve as a drug candidate or lead compound for developing novel anti-inflammatory and analgesic therapeutic agent(s) with minimum toxicity on gastric mucosa.

Vishal Kandathil - One of the best experts on this subject based on the ideXlab platform.

  • Immobilizing biogenically synthesized palladium nanoparticles on cellulose support as a green and sustainable dip catalyst for cross-coupling reaction
    Cellulose, 2020
    Co-Authors: Manjunatha Kempasiddaiah, Vishal Kandathil, Ramesh B. Dateer, B. S. Sasidhar, Shivaputra A. Patil
    Abstract:

    Biowaste resources are the promising renewable raw materials for green and economical purpose. In this context, usage of cellulose fibers as linear and flexible bio-polymer derived from waste lignocellulosic biomass has gained much attention in various applications due to their extensive properties such as eco-friendly, low cost, easy availability, low energy consumption, bio-degradability, high tensile strength and could be recyclable compared to other synthetic fibers those are expensive and non-decomposable in nature. In the present work, biogenically prepared palladium nanoparticles from waste banana pseudostem extract are immobilized on cellulose fibers, isolated from waste banana pseudostem as dip catalyst through green protocol for the first time. The synthesized new dip catalyst was characterized by ATR-IR, FE-SEM, EDS, ICP-OES, HR-TEM, p -XRD, TG/DTA, UV–Vis, GC–MS, XPS and BET surface area analysis. Catalytic potential and reusability of newly developed dip catalyst has been studied in Suzuki–Miyaura cross-coupling reactions for the synthesis of various functional groups tolerated biaryls for practical applications. In addition, an analgesic non-steroidal anti-inflammatory drug molecule Felbinac was synthesized in greener reaction conditions by using dip catalyst with good yield.

  • Immobilizing biogenically synthesized palladium nanoparticles on cellulose support as a green and sustainable dip catalyst for cross-coupling reaction
    Cellulose, 2020
    Co-Authors: Manjunatha Kempasiddaiah, Vishal Kandathil, Ramesh B. Dateer, B. S. Sasidhar, Shivaputra A. Patil
    Abstract:

    Biowaste resources are the promising renewable raw materials for green and economical purpose. In this context, usage of cellulose fibers as linear and flexible bio-polymer derived from waste lignocellulosic biomass has gained much attention in various applications due to their extensive properties such as eco-friendly, low cost, easy availability, low energy consumption, bio-degradability, high tensile strength and could be recyclable compared to other synthetic fibers those are expensive and non-decomposable in nature. In the present work, biogenically prepared palladium nanoparticles from waste banana pseudostem extract are immobilized on cellulose fibers, isolated from waste banana pseudostem as dip catalyst through green protocol for the first time. The synthesized new dip catalyst was characterized by ATR-IR, FE-SEM, EDS, ICP-OES, HR-TEM, p -XRD, TG/DTA, UV–Vis, GC–MS, XPS and BET surface area analysis. Catalytic potential and reusability of newly developed dip catalyst has been studied in Suzuki–Miyaura cross-coupling reactions for the synthesis of various functional groups tolerated biaryls for practical applications. In addition, an analgesic non-steroidal anti-inflammatory drug molecule Felbinac was synthesized in greener reaction conditions by using dip catalyst with good yield.