Fruit Tree

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 54846 Experts worldwide ranked by ideXlab platform

Ray Ming - One of the best experts on this subject based on the ideXlab platform.

  • Genome of papaya, a fast growing tropical Fruit Tree
    Tree Genetics & Genomes, 2012
    Co-Authors: Ray Ming, Qingyi Yu, Paul H. Moore, Robert E. Paull, Nancy J. Chen, Ming-li Wang, Mary A. Schuler, Jiming Jiang, Andrew H. Paterson
    Abstract:

    Papaya is a major Fruit crop in tropical and subtropical regions worldwide. It has long been recognized as a nutritious and healthy Fruit rich in vitamins A and C. Its small genome, unique aspects of nascent sex chromosomes, and agricultural importance are justifications for sequencing the genome. A female plant of the transgenic variety SunUp was selected for sequencing its genome to avoid the complication of assembling the XY chromosomes in a male or hermaphrodite plant. The draft genome revealed fewer genes than sequenced genomes of flowering plants, partly due to its lack of genome wide duplication since the ancient triplication event shared by eudicots. Most gene families have fewer members in papaya, including significantly fewer disease resistance genes. However, striking amplifications in gene number were found in some functional groups, including MADS-box genes, starch synthases, and volatiles that might affect the speciation and adaptation of papaya. The draft genome was used to clone a gene controlling Fruit flesh color and to accelerate the construction of physical maps of sex chromosomes in papaya. Finishing the papaya genome and re-sequencing selected genomes in the family will further facilitate papaya improvement and the study of genome and sex chromosome evolution in angiosperms, particularly in Caricaceae.

  • the draft genome of the transgenic tropical Fruit Tree papaya carica papaya linnaeus
    Nature, 2008
    Co-Authors: Ray Ming, S Hou, Yun Feng, Alexandre Dionnelaporte, Jimmy H Saw, Pavel Senin, Wei Wang, Kanako L T Lewis, Steven L Salzberg, Lu Feng
    Abstract:

    Papaya, a Fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3x draft genome sequence of 'SunUp' papaya, the first commercial virus-resistant transgenic Fruit Tree to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of Tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for Fruit-Tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica's distinguishing morpho-physiological, medicinal and nutritional properties.

  • the draft genome of the transgenic tropical Fruit Tree papaya carica papaya linnaeus
    Nature, 2008
    Co-Authors: Ray Ming, Qingyi Yu, Yun Feng, Alexandre Dionnelaporte, Pavel Senin, Wei Wang, Kanako L T Lewis, Steven L Salzberg, Benjamin V Ly, Lu Feng
    Abstract:

    In the early 1990s an outbreak of papaya ringspot virus (PRSV) in the papaya groves in the Puna district of Hawaii caused severe damage to an important crop. Since then, the planting of two transgenic cultivars resistant to the virus — called 'SunUp' and 'Rainbow' — has helped to maintain yields. SunUp is a transgenic red-fleshed Fruit that expresses the coat protein gene of a mild mutant of PRSV, conferring resistance via post-transcriptional gene silencing. Rainbow is a yellow-fleshed (and therefore more popular) F1 hybrid bred from SunUp. Now the draft genome sequence of the SunUp strain of papaya has been determined — a first for a commercial virus-resistant transgenic Fruit Tree. Comparison of this plant genome to those of Arabidopsis and others sheds light on the evolution of qualities such as biosynthesis, starch deposition, control of photosynthesis and pathways for creating the volatile compounds that contribute to the characteristic flavour of papaya. On the cover, the disease-free transgenic Rainbow and the severely infected, stunted and dying non-transgenic Sunrise grow in adjoining plots. Researchers from Hawaii and an international consortium have produced a draft genome assembly for 'SunUp', the first commercial virus-resistant transgenic Fruit Tree. Comparison of this plant genome to those of Arabidopsis and others sheds light on evolution of characteristics such as biosynthesis, starch deposition, control of photosynthesis and pathways for creating volatile compounds. Papaya, a Fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3× draft genome sequence of ‘SunUp’ papaya, the first commercial virus-resistant transgenic Fruit Tree1 to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far2,3,4,5, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of Tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for Fruit-Tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica’s distinguishing morpho-physiological, medicinal and nutritional properties.

Lu Feng - One of the best experts on this subject based on the ideXlab platform.

  • the draft genome of the transgenic tropical Fruit Tree papaya carica papaya linnaeus
    Nature, 2008
    Co-Authors: Ray Ming, S Hou, Yun Feng, Alexandre Dionnelaporte, Jimmy H Saw, Pavel Senin, Wei Wang, Kanako L T Lewis, Steven L Salzberg, Lu Feng
    Abstract:

    Papaya, a Fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3x draft genome sequence of 'SunUp' papaya, the first commercial virus-resistant transgenic Fruit Tree to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of Tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for Fruit-Tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica's distinguishing morpho-physiological, medicinal and nutritional properties.

  • the draft genome of the transgenic tropical Fruit Tree papaya carica papaya linnaeus
    Nature, 2008
    Co-Authors: Ray Ming, Qingyi Yu, Yun Feng, Alexandre Dionnelaporte, Pavel Senin, Wei Wang, Kanako L T Lewis, Steven L Salzberg, Benjamin V Ly, Lu Feng
    Abstract:

    In the early 1990s an outbreak of papaya ringspot virus (PRSV) in the papaya groves in the Puna district of Hawaii caused severe damage to an important crop. Since then, the planting of two transgenic cultivars resistant to the virus — called 'SunUp' and 'Rainbow' — has helped to maintain yields. SunUp is a transgenic red-fleshed Fruit that expresses the coat protein gene of a mild mutant of PRSV, conferring resistance via post-transcriptional gene silencing. Rainbow is a yellow-fleshed (and therefore more popular) F1 hybrid bred from SunUp. Now the draft genome sequence of the SunUp strain of papaya has been determined — a first for a commercial virus-resistant transgenic Fruit Tree. Comparison of this plant genome to those of Arabidopsis and others sheds light on the evolution of qualities such as biosynthesis, starch deposition, control of photosynthesis and pathways for creating the volatile compounds that contribute to the characteristic flavour of papaya. On the cover, the disease-free transgenic Rainbow and the severely infected, stunted and dying non-transgenic Sunrise grow in adjoining plots. Researchers from Hawaii and an international consortium have produced a draft genome assembly for 'SunUp', the first commercial virus-resistant transgenic Fruit Tree. Comparison of this plant genome to those of Arabidopsis and others sheds light on evolution of characteristics such as biosynthesis, starch deposition, control of photosynthesis and pathways for creating volatile compounds. Papaya, a Fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3× draft genome sequence of ‘SunUp’ papaya, the first commercial virus-resistant transgenic Fruit Tree1 to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far2,3,4,5, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of Tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for Fruit-Tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica’s distinguishing morpho-physiological, medicinal and nutritional properties.

Allison J. Miller - One of the best experts on this subject based on the ideXlab platform.

  • gis based characterization of the geographic distributions of wild and cultivated populations of the mesoamerican Fruit Tree spondias purpurea anacardiaceae
    American Journal of Botany, 2006
    Co-Authors: Allison J. Miller, Jason H Knouft
    Abstract:

    : Humans are having a profound impact on the geographic distributions of plant populations. In crop species, domestication has been accompanied by the geographic expansion of cultivated populations relative to their wild ancestors. We used a geographical information system (GIS)-based approach to investigate differences in the environmental factors characterizing the geographic distributions of cultivated and wild populations of the Mesoamerican Fruit Tree Spondias purpurea. Locality data for 86 cultivated and 28 wild S. purpurea populations were used in conjunction with environmental data layers and Maxent, a maximum entropy application for predicting species distributions. Interpredictivity analyses and principal components analysis revealed that the predicted distribution of wild S. purpurea is nested within the cultivated distribution and that the ecological niche (defined by environmental characteristics) of cultivated S. purpurea has expanded relative to that of wild populations. Significant differences between wild and cultivated populations were detected for five environmental variables, corresponding to the expansion of S. purpurea during the domestication process from its native habitat in the Mesoamerican tropical dry forests into less seasonal habitats. These data suggest that humans have altered the range of habitats occupied by cultivated S. purpurea populations relative to their wild progenitors.

  • domestication and the distribution of genetic variation in wild and cultivated populations of the mesoamerican Fruit Tree spondias purpurea l anacardiaceae
    Molecular Ecology, 2006
    Co-Authors: Allison J. Miller, Barbara A. Schaal
    Abstract:

    : Domestication occurs as humans select and cultivate wild plants in agricultural habitats. The amount and structure of variation in contemporary cultivated populations has been shaped, in part, by how genetic material was transferred from one cultivated generation to the next. In some cultivated Tree species, domestication involved a shift from sexually reproducing wild populations to vegetatively propagated cultivated populations; however, little is known about how domestication has impacted variation in these species. We employed AFLP data to explore the amount, structure, and distribution of variation in clonally propagated domesticated populations and sexually reproducing wild populations of the Neotropical Fruit Tree, Spondias purpurea (Anacardiaceae). Cultivated populations from three different agricultural habitats were included: living fences, backyards, and orchards. AFLP data were analysed using measures of genetic diversity (% polymorphic loci, Shannon's diversity index, Nei's gene diversity, panmictic heterozygosity), population structure (F(ST) analogues), and principal components analyses. Levels of genetic variation in cultivated S. purpurea populations are significantly less than variation found in wild populations, although the amount of diversity varies in different agricultural habitats. Cultivated populations have a greater proportion of their genetic variability distributed among populations than wild populations. The genetic structure of backyard populations resembles that of wild populations, but living fence and orchard populations have 1/3 more variability distributed among populations, most likely a reflection of relative levels of vegetative reproduction. Finally, these results suggest that S. purpurea was domesticated in two distinct regions within Mesoamerica.

  • Domestication of a Mesoamerican cultivated Fruit Tree, Spondias purpurea
    Proceedings of the National Academy of Sciences of the United States of America, 2005
    Co-Authors: Allison J. Miller, Barbara A. Schaal
    Abstract:

    Contemporary patterns of genetic variation in crops reflect historical processes associated with domestication, such as the geographic origin(s) of cultivated populations. Although significant progress has been made in identifying several global centers of domestication, few studies have addressed the issue of multiple origins of cultivated plant populations from different geographic regions within a domestication center. This study investigates the domestication history of jocote (Spondias purpurea), a Mesoamerican cultivated Fruit Tree. Sequences of the chloroplast spacer trnG–trnS were obtained for cultivated and wild S. purpurea Trees, two sympatric taxa (Spondias mombin var. mombin and Spondias radlkoferi), and two outgroups (S. mombin var. globosa and Spondias testudinus). A phylogeographic approach was used and statistically significant associations of clades and geographical location were tested with a nested clade analysis. The sequences confirm that wild populations of S. purpurea are the likely progenitors of cultivated jocote Trees. This study provides phylogeographic evidence of multiple domestications of this Mesoamerican cultivated Fruit Tree. Haplotypes detected in S. purpurea Trees form two clusters, each of which includes alleles recovered in both cultivated and wild populations from distinct geographic regions. Cultivated S. purpurea populations have fewer unique trnG–trnS alleles than wild populations; however, five haplotypes were absent in the wild. The presence of unique alleles in cultivation may reflect contemporary extinction of the tropical dry forests of Mesoamerica. These data indicate that some agricultural habitats may be functioning as reservoirs of genetic variation in S. purpurea.

Pavel Senin - One of the best experts on this subject based on the ideXlab platform.

  • the draft genome of the transgenic tropical Fruit Tree papaya carica papaya linnaeus
    Nature, 2008
    Co-Authors: Ray Ming, S Hou, Yun Feng, Alexandre Dionnelaporte, Jimmy H Saw, Pavel Senin, Wei Wang, Kanako L T Lewis, Steven L Salzberg, Lu Feng
    Abstract:

    Papaya, a Fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3x draft genome sequence of 'SunUp' papaya, the first commercial virus-resistant transgenic Fruit Tree to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of Tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for Fruit-Tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica's distinguishing morpho-physiological, medicinal and nutritional properties.

  • the draft genome of the transgenic tropical Fruit Tree papaya carica papaya linnaeus
    Nature, 2008
    Co-Authors: Ray Ming, Qingyi Yu, Yun Feng, Alexandre Dionnelaporte, Pavel Senin, Wei Wang, Kanako L T Lewis, Steven L Salzberg, Benjamin V Ly, Lu Feng
    Abstract:

    In the early 1990s an outbreak of papaya ringspot virus (PRSV) in the papaya groves in the Puna district of Hawaii caused severe damage to an important crop. Since then, the planting of two transgenic cultivars resistant to the virus — called 'SunUp' and 'Rainbow' — has helped to maintain yields. SunUp is a transgenic red-fleshed Fruit that expresses the coat protein gene of a mild mutant of PRSV, conferring resistance via post-transcriptional gene silencing. Rainbow is a yellow-fleshed (and therefore more popular) F1 hybrid bred from SunUp. Now the draft genome sequence of the SunUp strain of papaya has been determined — a first for a commercial virus-resistant transgenic Fruit Tree. Comparison of this plant genome to those of Arabidopsis and others sheds light on the evolution of qualities such as biosynthesis, starch deposition, control of photosynthesis and pathways for creating the volatile compounds that contribute to the characteristic flavour of papaya. On the cover, the disease-free transgenic Rainbow and the severely infected, stunted and dying non-transgenic Sunrise grow in adjoining plots. Researchers from Hawaii and an international consortium have produced a draft genome assembly for 'SunUp', the first commercial virus-resistant transgenic Fruit Tree. Comparison of this plant genome to those of Arabidopsis and others sheds light on evolution of characteristics such as biosynthesis, starch deposition, control of photosynthesis and pathways for creating volatile compounds. Papaya, a Fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3× draft genome sequence of ‘SunUp’ papaya, the first commercial virus-resistant transgenic Fruit Tree1 to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far2,3,4,5, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of Tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for Fruit-Tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica’s distinguishing morpho-physiological, medicinal and nutritional properties.

Steven L Salzberg - One of the best experts on this subject based on the ideXlab platform.

  • the draft genome of the transgenic tropical Fruit Tree papaya carica papaya linnaeus
    Nature, 2008
    Co-Authors: Ray Ming, S Hou, Yun Feng, Alexandre Dionnelaporte, Jimmy H Saw, Pavel Senin, Wei Wang, Kanako L T Lewis, Steven L Salzberg, Lu Feng
    Abstract:

    Papaya, a Fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3x draft genome sequence of 'SunUp' papaya, the first commercial virus-resistant transgenic Fruit Tree to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of Tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for Fruit-Tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica's distinguishing morpho-physiological, medicinal and nutritional properties.

  • the draft genome of the transgenic tropical Fruit Tree papaya carica papaya linnaeus
    Nature, 2008
    Co-Authors: Ray Ming, Qingyi Yu, Yun Feng, Alexandre Dionnelaporte, Pavel Senin, Wei Wang, Kanako L T Lewis, Steven L Salzberg, Benjamin V Ly, Lu Feng
    Abstract:

    In the early 1990s an outbreak of papaya ringspot virus (PRSV) in the papaya groves in the Puna district of Hawaii caused severe damage to an important crop. Since then, the planting of two transgenic cultivars resistant to the virus — called 'SunUp' and 'Rainbow' — has helped to maintain yields. SunUp is a transgenic red-fleshed Fruit that expresses the coat protein gene of a mild mutant of PRSV, conferring resistance via post-transcriptional gene silencing. Rainbow is a yellow-fleshed (and therefore more popular) F1 hybrid bred from SunUp. Now the draft genome sequence of the SunUp strain of papaya has been determined — a first for a commercial virus-resistant transgenic Fruit Tree. Comparison of this plant genome to those of Arabidopsis and others sheds light on the evolution of qualities such as biosynthesis, starch deposition, control of photosynthesis and pathways for creating the volatile compounds that contribute to the characteristic flavour of papaya. On the cover, the disease-free transgenic Rainbow and the severely infected, stunted and dying non-transgenic Sunrise grow in adjoining plots. Researchers from Hawaii and an international consortium have produced a draft genome assembly for 'SunUp', the first commercial virus-resistant transgenic Fruit Tree. Comparison of this plant genome to those of Arabidopsis and others sheds light on evolution of characteristics such as biosynthesis, starch deposition, control of photosynthesis and pathways for creating volatile compounds. Papaya, a Fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3× draft genome sequence of ‘SunUp’ papaya, the first commercial virus-resistant transgenic Fruit Tree1 to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far2,3,4,5, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of Tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for Fruit-Tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica’s distinguishing morpho-physiological, medicinal and nutritional properties.