Fundamental Measurement

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 97419 Experts worldwide ranked by ideXlab platform

J V Clarke - One of the best experts on this subject based on the ideXlab platform.

  • lower limb alignment becomes more varus and hyperextended from supine to bipedal stance in asymptomatic osteoarthritic and prosthetic neutral or varus knees
    2019
    Co-Authors: Michael J C Brown, A H Deakin, Frederic Picard, Philip Riches, J V Clarke
    Abstract:

    Knee alignment is a Fundamental Measurement in the assessment, monitoring and surgical management of patients with osteoarthritis. There is a lack of data regarding how static tibiofemoral alignment varies between supine and standing conditions. This study aimed to quantify the relationship between supine and standing lower limb alignment in asymptomatic, osteoarthritic (OA) and prosthetic (TKA) knees. A non-invasive position capture system was used to assess knee alignment for 30 asymptomatic controls and 31 patients with OA both before and after TKA. Coronal and sagittal mechanical femorotibial angles were measured supine with the lower limb in extension and in bipedal stance. Changes between conditions were analysed using paired ttests. Vector plots of ankle centre displacement relative to the knee centre from supine to standing were produced to allow three-dimensional visualisation. All groups showed a trend towards varus and extension when going from supine to standing. Mean change for asymptomatic knees was 1.2° more varus (p = 0.001) and 3.8° more extended (p < 0.001). For OA knees this was 1.1° more varus (p = 0.009) and 5.9° more extended (p < 0.001) and TKA knees 1.9° more varus (p < 0.001) and 5.6° more extended (p < 0.001). The observed consistent changes in lower limb alignment between supine and standing positions across knee types suggests the soft tissue envelope restraining the knee may have a greater influence on dynamic alignment changes than the underlying bony deformity. This highlights the importance of quantifying soft tissue behaviour when planning, performing and evaluating alignment dependent surgical interventions of the knee. When routinely assessing any type of knee, clinicians should be aware that subtle consistent alignment changes occur under weightbearing conditions and tailor their treatments accordingly. II.

  • the effect of weight bearing on tibiofemoral alignment in asymptomatic osteoarthritic and prosthetic knees
    2012
    Co-Authors: J V Clarke, A H Deakin, Frederic Picard, Philip Riches
    Abstract:

    Knee alignment is a Fundamental Measurement in the assessment, monitoring and surgical management of patients with osteoarthritis [OA]. In spite of extensive research into the consequences of malalignment, our understanding of static tibiofemoral alignment remains poor with discrepancies in the reported weight-bearing characteristics of the knee joint and there is a lack of data regarding the potential variation between supine and standing (functional) conditions. In total knee arthroplasty [TKA] the lower limb alignment is usually measured in a supine condition and decisions on prosthesis placement made on this. An improved understanding of the relationship between supine and weight-bearing conditions may lead to a reassessment of current surgical goals. The purpose of this study was to explore the relationship between supine and standing lower limb alignment in asymptomatic, osteoarthritic and prosthetic knees. Our hypothesis was that the change in alignment of these three groups would be different. A non-invasive infrared position capture system (accuracy ±1° in both coronal and sagittal plane) was used to assess the knee alignment for 30 asymptomatic controls and 31 patients with OA, both before and after TKA. Coronal and sagittal mechanical femorotibial (MFT) angles in extension (negative values indicating varus in the coronal plane and hyperextension in the sagittal plane) were measured with each subject supine and in bi-pedal stance. For the supine test, the lower limb was supported at the heel and the subject told to relax. For the standing position subjects were asked to assume their normal stance. The change in alignment between these two conditions was analysed using a paired t-test for both coronal and sagittal planes. To quantify the change in 3D, vector plots of ankle centre displacement relative to the knee centre from the supine to standing condition were produced. Alignment in both planes changed significantly from supine to standing for all three groups. For the coronal plane the supine and standing Measurements (in degrees, mean(SD)) were 0.1(2.5) and −1.1(3.7) in the asymptomatic group, −2.5(5.7) and −3.6(6) in the OA group and −0.7(1.4) and −2.5(2) in the TKA group. For the sagittal plane the numbers were −1.7(3.3) and −5.5(4.9); 7.7(7.1) and 1.8(7.7); 6.8(5.1) and 1.4((7.6) respectively. This change was most frequently towards relative varus and extension. Vector plots showed that the trend of relative varus and extension in stance was similar in overall magnitude and direction between the three groups. Knee alignment can change from supine to standing for asymptomatic and osteoarthritic knees, most frequently towards relative varus and hyperextension. The similarities between each group did not support our hypothesis. The consistent kinematic pattern for different knee types suggests that soft tissue restraints rather than underlying joint deformity may be more influential in dynamic control of alignment from lying to standing. In spite of some evidence suggesting a difference between supine and standing knee alignment a mechanical femorotibial (MFT) angle of 0° is a common intra-operative target as well as the desired post-operative weight-bearing alignment. These results indicated that arthroplasties positioned in varus intra-operatively could potentially become ‘outliers’ (>3° varus) when measured weight-bearing. Mild flexion contractures may correct when standing, reducing the need for intra-operative posterior release. These potential changes should be considered when positioning TKA components on supine limbs as post-operative functional alignment may be different.

Frederic Picard - One of the best experts on this subject based on the ideXlab platform.

  • lower limb alignment becomes more varus and hyperextended from supine to bipedal stance in asymptomatic osteoarthritic and prosthetic neutral or varus knees
    2019
    Co-Authors: Michael J C Brown, A H Deakin, Frederic Picard, Philip Riches, J V Clarke
    Abstract:

    Knee alignment is a Fundamental Measurement in the assessment, monitoring and surgical management of patients with osteoarthritis. There is a lack of data regarding how static tibiofemoral alignment varies between supine and standing conditions. This study aimed to quantify the relationship between supine and standing lower limb alignment in asymptomatic, osteoarthritic (OA) and prosthetic (TKA) knees. A non-invasive position capture system was used to assess knee alignment for 30 asymptomatic controls and 31 patients with OA both before and after TKA. Coronal and sagittal mechanical femorotibial angles were measured supine with the lower limb in extension and in bipedal stance. Changes between conditions were analysed using paired ttests. Vector plots of ankle centre displacement relative to the knee centre from supine to standing were produced to allow three-dimensional visualisation. All groups showed a trend towards varus and extension when going from supine to standing. Mean change for asymptomatic knees was 1.2° more varus (p = 0.001) and 3.8° more extended (p < 0.001). For OA knees this was 1.1° more varus (p = 0.009) and 5.9° more extended (p < 0.001) and TKA knees 1.9° more varus (p < 0.001) and 5.6° more extended (p < 0.001). The observed consistent changes in lower limb alignment between supine and standing positions across knee types suggests the soft tissue envelope restraining the knee may have a greater influence on dynamic alignment changes than the underlying bony deformity. This highlights the importance of quantifying soft tissue behaviour when planning, performing and evaluating alignment dependent surgical interventions of the knee. When routinely assessing any type of knee, clinicians should be aware that subtle consistent alignment changes occur under weightbearing conditions and tailor their treatments accordingly. II.

  • the effect of weight bearing on tibiofemoral alignment in asymptomatic osteoarthritic and prosthetic knees
    2012
    Co-Authors: J V Clarke, A H Deakin, Frederic Picard, Philip Riches
    Abstract:

    Knee alignment is a Fundamental Measurement in the assessment, monitoring and surgical management of patients with osteoarthritis [OA]. In spite of extensive research into the consequences of malalignment, our understanding of static tibiofemoral alignment remains poor with discrepancies in the reported weight-bearing characteristics of the knee joint and there is a lack of data regarding the potential variation between supine and standing (functional) conditions. In total knee arthroplasty [TKA] the lower limb alignment is usually measured in a supine condition and decisions on prosthesis placement made on this. An improved understanding of the relationship between supine and weight-bearing conditions may lead to a reassessment of current surgical goals. The purpose of this study was to explore the relationship between supine and standing lower limb alignment in asymptomatic, osteoarthritic and prosthetic knees. Our hypothesis was that the change in alignment of these three groups would be different. A non-invasive infrared position capture system (accuracy ±1° in both coronal and sagittal plane) was used to assess the knee alignment for 30 asymptomatic controls and 31 patients with OA, both before and after TKA. Coronal and sagittal mechanical femorotibial (MFT) angles in extension (negative values indicating varus in the coronal plane and hyperextension in the sagittal plane) were measured with each subject supine and in bi-pedal stance. For the supine test, the lower limb was supported at the heel and the subject told to relax. For the standing position subjects were asked to assume their normal stance. The change in alignment between these two conditions was analysed using a paired t-test for both coronal and sagittal planes. To quantify the change in 3D, vector plots of ankle centre displacement relative to the knee centre from the supine to standing condition were produced. Alignment in both planes changed significantly from supine to standing for all three groups. For the coronal plane the supine and standing Measurements (in degrees, mean(SD)) were 0.1(2.5) and −1.1(3.7) in the asymptomatic group, −2.5(5.7) and −3.6(6) in the OA group and −0.7(1.4) and −2.5(2) in the TKA group. For the sagittal plane the numbers were −1.7(3.3) and −5.5(4.9); 7.7(7.1) and 1.8(7.7); 6.8(5.1) and 1.4((7.6) respectively. This change was most frequently towards relative varus and extension. Vector plots showed that the trend of relative varus and extension in stance was similar in overall magnitude and direction between the three groups. Knee alignment can change from supine to standing for asymptomatic and osteoarthritic knees, most frequently towards relative varus and hyperextension. The similarities between each group did not support our hypothesis. The consistent kinematic pattern for different knee types suggests that soft tissue restraints rather than underlying joint deformity may be more influential in dynamic control of alignment from lying to standing. In spite of some evidence suggesting a difference between supine and standing knee alignment a mechanical femorotibial (MFT) angle of 0° is a common intra-operative target as well as the desired post-operative weight-bearing alignment. These results indicated that arthroplasties positioned in varus intra-operatively could potentially become ‘outliers’ (>3° varus) when measured weight-bearing. Mild flexion contractures may correct when standing, reducing the need for intra-operative posterior release. These potential changes should be considered when positioning TKA components on supine limbs as post-operative functional alignment may be different.

Philip Riches - One of the best experts on this subject based on the ideXlab platform.

  • lower limb alignment becomes more varus and hyperextended from supine to bipedal stance in asymptomatic osteoarthritic and prosthetic neutral or varus knees
    2019
    Co-Authors: Michael J C Brown, A H Deakin, Frederic Picard, Philip Riches, J V Clarke
    Abstract:

    Knee alignment is a Fundamental Measurement in the assessment, monitoring and surgical management of patients with osteoarthritis. There is a lack of data regarding how static tibiofemoral alignment varies between supine and standing conditions. This study aimed to quantify the relationship between supine and standing lower limb alignment in asymptomatic, osteoarthritic (OA) and prosthetic (TKA) knees. A non-invasive position capture system was used to assess knee alignment for 30 asymptomatic controls and 31 patients with OA both before and after TKA. Coronal and sagittal mechanical femorotibial angles were measured supine with the lower limb in extension and in bipedal stance. Changes between conditions were analysed using paired ttests. Vector plots of ankle centre displacement relative to the knee centre from supine to standing were produced to allow three-dimensional visualisation. All groups showed a trend towards varus and extension when going from supine to standing. Mean change for asymptomatic knees was 1.2° more varus (p = 0.001) and 3.8° more extended (p < 0.001). For OA knees this was 1.1° more varus (p = 0.009) and 5.9° more extended (p < 0.001) and TKA knees 1.9° more varus (p < 0.001) and 5.6° more extended (p < 0.001). The observed consistent changes in lower limb alignment between supine and standing positions across knee types suggests the soft tissue envelope restraining the knee may have a greater influence on dynamic alignment changes than the underlying bony deformity. This highlights the importance of quantifying soft tissue behaviour when planning, performing and evaluating alignment dependent surgical interventions of the knee. When routinely assessing any type of knee, clinicians should be aware that subtle consistent alignment changes occur under weightbearing conditions and tailor their treatments accordingly. II.

  • the effect of weight bearing on tibiofemoral alignment in asymptomatic osteoarthritic and prosthetic knees
    2012
    Co-Authors: J V Clarke, A H Deakin, Frederic Picard, Philip Riches
    Abstract:

    Knee alignment is a Fundamental Measurement in the assessment, monitoring and surgical management of patients with osteoarthritis [OA]. In spite of extensive research into the consequences of malalignment, our understanding of static tibiofemoral alignment remains poor with discrepancies in the reported weight-bearing characteristics of the knee joint and there is a lack of data regarding the potential variation between supine and standing (functional) conditions. In total knee arthroplasty [TKA] the lower limb alignment is usually measured in a supine condition and decisions on prosthesis placement made on this. An improved understanding of the relationship between supine and weight-bearing conditions may lead to a reassessment of current surgical goals. The purpose of this study was to explore the relationship between supine and standing lower limb alignment in asymptomatic, osteoarthritic and prosthetic knees. Our hypothesis was that the change in alignment of these three groups would be different. A non-invasive infrared position capture system (accuracy ±1° in both coronal and sagittal plane) was used to assess the knee alignment for 30 asymptomatic controls and 31 patients with OA, both before and after TKA. Coronal and sagittal mechanical femorotibial (MFT) angles in extension (negative values indicating varus in the coronal plane and hyperextension in the sagittal plane) were measured with each subject supine and in bi-pedal stance. For the supine test, the lower limb was supported at the heel and the subject told to relax. For the standing position subjects were asked to assume their normal stance. The change in alignment between these two conditions was analysed using a paired t-test for both coronal and sagittal planes. To quantify the change in 3D, vector plots of ankle centre displacement relative to the knee centre from the supine to standing condition were produced. Alignment in both planes changed significantly from supine to standing for all three groups. For the coronal plane the supine and standing Measurements (in degrees, mean(SD)) were 0.1(2.5) and −1.1(3.7) in the asymptomatic group, −2.5(5.7) and −3.6(6) in the OA group and −0.7(1.4) and −2.5(2) in the TKA group. For the sagittal plane the numbers were −1.7(3.3) and −5.5(4.9); 7.7(7.1) and 1.8(7.7); 6.8(5.1) and 1.4((7.6) respectively. This change was most frequently towards relative varus and extension. Vector plots showed that the trend of relative varus and extension in stance was similar in overall magnitude and direction between the three groups. Knee alignment can change from supine to standing for asymptomatic and osteoarthritic knees, most frequently towards relative varus and hyperextension. The similarities between each group did not support our hypothesis. The consistent kinematic pattern for different knee types suggests that soft tissue restraints rather than underlying joint deformity may be more influential in dynamic control of alignment from lying to standing. In spite of some evidence suggesting a difference between supine and standing knee alignment a mechanical femorotibial (MFT) angle of 0° is a common intra-operative target as well as the desired post-operative weight-bearing alignment. These results indicated that arthroplasties positioned in varus intra-operatively could potentially become ‘outliers’ (>3° varus) when measured weight-bearing. Mild flexion contractures may correct when standing, reducing the need for intra-operative posterior release. These potential changes should be considered when positioning TKA components on supine limbs as post-operative functional alignment may be different.

John J Bollinger - One of the best experts on this subject based on the ideXlab platform.

  • phase coherent sensing of the center of mass motion of trapped ion crystals
    2020
    Co-Authors: M Affolter, Kevin A Gilmore, J E Jordan, John J Bollinger
    Abstract:

    Trapped ions are sensitive detectors of weak forces and electric fields that excite ion motion. Here Measurements of the center-of-mass motion of a trapped-ion crystal that are phase coherent with an applied weak external force are reported. These experiments are conducted far from the trap motional frequency on a two-dimensional trapped-ion crystal of approximately 100 ions, and determine the Fundamental Measurement imprecision of our protocol free from noise associated with the center-of-mass mode. The driven sinusoidal displacement of the crystal is detected by coupling the ion crystal motion to the internal spin degree of freedom of the ions using an oscillating spin-dependent optical dipole force. The resulting induced spin precession is proportional to the displacement amplitude of the crystal, and is measured with near-projection-noise-limited resolution. A $49\phantom{\rule{4pt}{0ex}}\mathrm{pm}$ displacement is detected with a signal-to-noise ratio of 1 in a single experimental determination, which is an order-of-magnitude improvement over prior phase-incoherent experiments. This displacement amplitude is 40 times smaller than the zero-point fluctuations. With our repetition rate, an $8.4\phantom{\rule{4pt}{0ex}}\mathrm{pm}/\sqrt{\mathrm{Hz}}$ displacement sensitivity is achieved, which implies $12\phantom{\rule{0.16em}{0ex}}(\mathrm{yN}/\mathrm{ion})/\sqrt{\mathrm{Hz}}$ and $77\phantom{\rule{0.16em}{0ex}}(\ensuremath{\mu}\mathrm{V}/\mathrm{m})/\sqrt{\mathrm{Hz}}$ sensitivities to forces and electric fields, respectively. This displacement sensitivity, when applied on-resonance with the center-of-mass mode, indicates the possibility of weak force and electric field detection below ${10}^{\ensuremath{-}3}\phantom{\rule{4pt}{0ex}}\mathrm{yN}$/ion and $1\phantom{\rule{4pt}{0ex}}\mathrm{nV}$/m, respectively.

A H Deakin - One of the best experts on this subject based on the ideXlab platform.

  • lower limb alignment becomes more varus and hyperextended from supine to bipedal stance in asymptomatic osteoarthritic and prosthetic neutral or varus knees
    2019
    Co-Authors: Michael J C Brown, A H Deakin, Frederic Picard, Philip Riches, J V Clarke
    Abstract:

    Knee alignment is a Fundamental Measurement in the assessment, monitoring and surgical management of patients with osteoarthritis. There is a lack of data regarding how static tibiofemoral alignment varies between supine and standing conditions. This study aimed to quantify the relationship between supine and standing lower limb alignment in asymptomatic, osteoarthritic (OA) and prosthetic (TKA) knees. A non-invasive position capture system was used to assess knee alignment for 30 asymptomatic controls and 31 patients with OA both before and after TKA. Coronal and sagittal mechanical femorotibial angles were measured supine with the lower limb in extension and in bipedal stance. Changes between conditions were analysed using paired ttests. Vector plots of ankle centre displacement relative to the knee centre from supine to standing were produced to allow three-dimensional visualisation. All groups showed a trend towards varus and extension when going from supine to standing. Mean change for asymptomatic knees was 1.2° more varus (p = 0.001) and 3.8° more extended (p < 0.001). For OA knees this was 1.1° more varus (p = 0.009) and 5.9° more extended (p < 0.001) and TKA knees 1.9° more varus (p < 0.001) and 5.6° more extended (p < 0.001). The observed consistent changes in lower limb alignment between supine and standing positions across knee types suggests the soft tissue envelope restraining the knee may have a greater influence on dynamic alignment changes than the underlying bony deformity. This highlights the importance of quantifying soft tissue behaviour when planning, performing and evaluating alignment dependent surgical interventions of the knee. When routinely assessing any type of knee, clinicians should be aware that subtle consistent alignment changes occur under weightbearing conditions and tailor their treatments accordingly. II.

  • the effect of weight bearing on tibiofemoral alignment in asymptomatic osteoarthritic and prosthetic knees
    2012
    Co-Authors: J V Clarke, A H Deakin, Frederic Picard, Philip Riches
    Abstract:

    Knee alignment is a Fundamental Measurement in the assessment, monitoring and surgical management of patients with osteoarthritis [OA]. In spite of extensive research into the consequences of malalignment, our understanding of static tibiofemoral alignment remains poor with discrepancies in the reported weight-bearing characteristics of the knee joint and there is a lack of data regarding the potential variation between supine and standing (functional) conditions. In total knee arthroplasty [TKA] the lower limb alignment is usually measured in a supine condition and decisions on prosthesis placement made on this. An improved understanding of the relationship between supine and weight-bearing conditions may lead to a reassessment of current surgical goals. The purpose of this study was to explore the relationship between supine and standing lower limb alignment in asymptomatic, osteoarthritic and prosthetic knees. Our hypothesis was that the change in alignment of these three groups would be different. A non-invasive infrared position capture system (accuracy ±1° in both coronal and sagittal plane) was used to assess the knee alignment for 30 asymptomatic controls and 31 patients with OA, both before and after TKA. Coronal and sagittal mechanical femorotibial (MFT) angles in extension (negative values indicating varus in the coronal plane and hyperextension in the sagittal plane) were measured with each subject supine and in bi-pedal stance. For the supine test, the lower limb was supported at the heel and the subject told to relax. For the standing position subjects were asked to assume their normal stance. The change in alignment between these two conditions was analysed using a paired t-test for both coronal and sagittal planes. To quantify the change in 3D, vector plots of ankle centre displacement relative to the knee centre from the supine to standing condition were produced. Alignment in both planes changed significantly from supine to standing for all three groups. For the coronal plane the supine and standing Measurements (in degrees, mean(SD)) were 0.1(2.5) and −1.1(3.7) in the asymptomatic group, −2.5(5.7) and −3.6(6) in the OA group and −0.7(1.4) and −2.5(2) in the TKA group. For the sagittal plane the numbers were −1.7(3.3) and −5.5(4.9); 7.7(7.1) and 1.8(7.7); 6.8(5.1) and 1.4((7.6) respectively. This change was most frequently towards relative varus and extension. Vector plots showed that the trend of relative varus and extension in stance was similar in overall magnitude and direction between the three groups. Knee alignment can change from supine to standing for asymptomatic and osteoarthritic knees, most frequently towards relative varus and hyperextension. The similarities between each group did not support our hypothesis. The consistent kinematic pattern for different knee types suggests that soft tissue restraints rather than underlying joint deformity may be more influential in dynamic control of alignment from lying to standing. In spite of some evidence suggesting a difference between supine and standing knee alignment a mechanical femorotibial (MFT) angle of 0° is a common intra-operative target as well as the desired post-operative weight-bearing alignment. These results indicated that arthroplasties positioned in varus intra-operatively could potentially become ‘outliers’ (>3° varus) when measured weight-bearing. Mild flexion contractures may correct when standing, reducing the need for intra-operative posterior release. These potential changes should be considered when positioning TKA components on supine limbs as post-operative functional alignment may be different.