Fungal Type

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 43014 Experts worldwide ranked by ideXlab platform

Yoshiyuki Nomura - One of the best experts on this subject based on the ideXlab platform.

  • gfsa encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of o glycan in aspergillus nidulans and aspergillus fumigatus
    Molecular Microbiology, 2013
    Co-Authors: Yuji Komachi, Haruka Motomatsu, Karina Kizjakina, Shintaro Hatakeyama, Keisuke Ekino, Taiki Futagami, Masatoshi Goto, Kaoru Takegawa, Pablo Sobrado, Yoshiyuki Nomura
    Abstract:

    The cell walls of filamentous fungi in the genus Aspergillus have galactofuranose-containing polysaccharides and glycoconjugates, including O-glycans, N-glycans, Fungal-Type galactomannan, and glycosylinositolphosphoceramide, which are important for cell wall integrity. Here, we attempted to identify galactofuranosyltransferases that couple galactofuranose monomers onto other wall components in Aspergillus nidulans. Using reverse-genetic and biochemical approaches, we identified that the AN8677 gene encoded a galactofuranosyltransferase, which we called GfsA, involved in galactofuranose (Galf) antigen biosynthesis. Disruption of gfsA reduced binding of β-Galf-specific antibody EB-A2 to O-glycosylated WscA protein and galactomannoproteins. The results of an in-vitro galactofuranose antigen synthase assay revealed that GfsA has β1,5- or β1,6- galactofuranosyltransferase activity for O-glycans in glycoproteins, uses UDP-D-galactofuranose as a sugar donor, and requires a divalent manganese cation for activity. GfsA was found to be localized at the Golgi apparatus based on cellular fractionation experiments. ΔgfsA cells exhibited an abnormal morphology characterized by poor hyphal extension, hyphal curvature, and limited formation of conidia. Several gfsA orthologs were identified in members of the Pezizomycotina subphylum of Ascomycota, including the human pathogen Aspergillus fumigatus. To our knowledge, this is the first characterization of a Fungal β-galactofuranosyltransferase, which was shown to be involved in galactofuranose antigen biosynthesis of O-glycans in the Golgi.

  • gfsA encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of O-glycan in Aspergillus nidulans and Aspergillus fumigatus
    Molecular Microbiology, 2013
    Co-Authors: Yuji Komachi, Haruka Motomatsu, Karina Kizjakina, Shintaro Hatakeyama, Keisuke Ekino, Taiki Futagami, Masatoshi Goto, Kaoru Takegawa, Pablo Sobrado, Yoshiyuki Nomura
    Abstract:

    The cells walls of filamentous fungi in the genus Aspergillus have galactofuranose (Galf)-containing polysaccharides and glycoconjugates, including O-glycans, N-glycans, Fungal-Type galactomannan and glycosylinositolphosphoceramide, which are important for cell wall integrity. Here, we attempted to identify galactofuranosyltransferases that couple Galf monomers onto other wall components in Aspergillus nidulans. Using reverse-genetic and biochemical approaches, we identified that the AN8677 gene encoded a galactofuranosyltransferase, which we called GfsA, involved in Galf antigen biosynthesis. Disruption of gfsA reduced binding of β-Galf-specific antibody EB-A2 to O-glycosylated WscA protein and galactomannoproteins. The results of an in-vitro Galf antigen synthase assay revealed that GfsA has β1,5- or β1,6-galactofuranosyltransferase activity for O-glycans in glycoproteins, uses UDP-d-Galf as a sugar donor, and requires a divalent manganese cation for activity. GfsA was found to be localized at the Golgi apparatus based on cellular fractionation experiments. ΔgfsA cells exhibited an abnormal morphology characterized by poor hyphal extension, hyphal curvature and limited formation of conidia. Several gfsA orthologues were identified in members of the Pezizomycotina subphylum of Ascomycota, including the human pathogen Aspergillus fumigatus. To our knowledge, this is the first characterization of a Fungal β-galactofuranosyltransferase, which was shown to be involved in Galf antigen biosynthesis of O-glycans in the Golgi.

Yuji Komachi - One of the best experts on this subject based on the ideXlab platform.

  • gfsa encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of o glycan in aspergillus nidulans and aspergillus fumigatus
    Molecular Microbiology, 2013
    Co-Authors: Yuji Komachi, Haruka Motomatsu, Karina Kizjakina, Shintaro Hatakeyama, Keisuke Ekino, Taiki Futagami, Masatoshi Goto, Kaoru Takegawa, Pablo Sobrado, Yoshiyuki Nomura
    Abstract:

    The cell walls of filamentous fungi in the genus Aspergillus have galactofuranose-containing polysaccharides and glycoconjugates, including O-glycans, N-glycans, Fungal-Type galactomannan, and glycosylinositolphosphoceramide, which are important for cell wall integrity. Here, we attempted to identify galactofuranosyltransferases that couple galactofuranose monomers onto other wall components in Aspergillus nidulans. Using reverse-genetic and biochemical approaches, we identified that the AN8677 gene encoded a galactofuranosyltransferase, which we called GfsA, involved in galactofuranose (Galf) antigen biosynthesis. Disruption of gfsA reduced binding of β-Galf-specific antibody EB-A2 to O-glycosylated WscA protein and galactomannoproteins. The results of an in-vitro galactofuranose antigen synthase assay revealed that GfsA has β1,5- or β1,6- galactofuranosyltransferase activity for O-glycans in glycoproteins, uses UDP-D-galactofuranose as a sugar donor, and requires a divalent manganese cation for activity. GfsA was found to be localized at the Golgi apparatus based on cellular fractionation experiments. ΔgfsA cells exhibited an abnormal morphology characterized by poor hyphal extension, hyphal curvature, and limited formation of conidia. Several gfsA orthologs were identified in members of the Pezizomycotina subphylum of Ascomycota, including the human pathogen Aspergillus fumigatus. To our knowledge, this is the first characterization of a Fungal β-galactofuranosyltransferase, which was shown to be involved in galactofuranose antigen biosynthesis of O-glycans in the Golgi.

  • gfsA encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of O-glycan in Aspergillus nidulans and Aspergillus fumigatus
    Molecular Microbiology, 2013
    Co-Authors: Yuji Komachi, Haruka Motomatsu, Karina Kizjakina, Shintaro Hatakeyama, Keisuke Ekino, Taiki Futagami, Masatoshi Goto, Kaoru Takegawa, Pablo Sobrado, Yoshiyuki Nomura
    Abstract:

    The cells walls of filamentous fungi in the genus Aspergillus have galactofuranose (Galf)-containing polysaccharides and glycoconjugates, including O-glycans, N-glycans, Fungal-Type galactomannan and glycosylinositolphosphoceramide, which are important for cell wall integrity. Here, we attempted to identify galactofuranosyltransferases that couple Galf monomers onto other wall components in Aspergillus nidulans. Using reverse-genetic and biochemical approaches, we identified that the AN8677 gene encoded a galactofuranosyltransferase, which we called GfsA, involved in Galf antigen biosynthesis. Disruption of gfsA reduced binding of β-Galf-specific antibody EB-A2 to O-glycosylated WscA protein and galactomannoproteins. The results of an in-vitro Galf antigen synthase assay revealed that GfsA has β1,5- or β1,6-galactofuranosyltransferase activity for O-glycans in glycoproteins, uses UDP-d-Galf as a sugar donor, and requires a divalent manganese cation for activity. GfsA was found to be localized at the Golgi apparatus based on cellular fractionation experiments. ΔgfsA cells exhibited an abnormal morphology characterized by poor hyphal extension, hyphal curvature and limited formation of conidia. Several gfsA orthologues were identified in members of the Pezizomycotina subphylum of Ascomycota, including the human pathogen Aspergillus fumigatus. To our knowledge, this is the first characterization of a Fungal β-galactofuranosyltransferase, which was shown to be involved in Galf antigen biosynthesis of O-glycans in the Golgi.

Kaoru Takegawa - One of the best experts on this subject based on the ideXlab platform.

  • gfsa encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of o glycan in aspergillus nidulans and aspergillus fumigatus
    Molecular Microbiology, 2013
    Co-Authors: Yuji Komachi, Haruka Motomatsu, Karina Kizjakina, Shintaro Hatakeyama, Keisuke Ekino, Taiki Futagami, Masatoshi Goto, Kaoru Takegawa, Pablo Sobrado, Yoshiyuki Nomura
    Abstract:

    The cell walls of filamentous fungi in the genus Aspergillus have galactofuranose-containing polysaccharides and glycoconjugates, including O-glycans, N-glycans, Fungal-Type galactomannan, and glycosylinositolphosphoceramide, which are important for cell wall integrity. Here, we attempted to identify galactofuranosyltransferases that couple galactofuranose monomers onto other wall components in Aspergillus nidulans. Using reverse-genetic and biochemical approaches, we identified that the AN8677 gene encoded a galactofuranosyltransferase, which we called GfsA, involved in galactofuranose (Galf) antigen biosynthesis. Disruption of gfsA reduced binding of β-Galf-specific antibody EB-A2 to O-glycosylated WscA protein and galactomannoproteins. The results of an in-vitro galactofuranose antigen synthase assay revealed that GfsA has β1,5- or β1,6- galactofuranosyltransferase activity for O-glycans in glycoproteins, uses UDP-D-galactofuranose as a sugar donor, and requires a divalent manganese cation for activity. GfsA was found to be localized at the Golgi apparatus based on cellular fractionation experiments. ΔgfsA cells exhibited an abnormal morphology characterized by poor hyphal extension, hyphal curvature, and limited formation of conidia. Several gfsA orthologs were identified in members of the Pezizomycotina subphylum of Ascomycota, including the human pathogen Aspergillus fumigatus. To our knowledge, this is the first characterization of a Fungal β-galactofuranosyltransferase, which was shown to be involved in galactofuranose antigen biosynthesis of O-glycans in the Golgi.

  • gfsA encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of O-glycan in Aspergillus nidulans and Aspergillus fumigatus
    Molecular Microbiology, 2013
    Co-Authors: Yuji Komachi, Haruka Motomatsu, Karina Kizjakina, Shintaro Hatakeyama, Keisuke Ekino, Taiki Futagami, Masatoshi Goto, Kaoru Takegawa, Pablo Sobrado, Yoshiyuki Nomura
    Abstract:

    The cells walls of filamentous fungi in the genus Aspergillus have galactofuranose (Galf)-containing polysaccharides and glycoconjugates, including O-glycans, N-glycans, Fungal-Type galactomannan and glycosylinositolphosphoceramide, which are important for cell wall integrity. Here, we attempted to identify galactofuranosyltransferases that couple Galf monomers onto other wall components in Aspergillus nidulans. Using reverse-genetic and biochemical approaches, we identified that the AN8677 gene encoded a galactofuranosyltransferase, which we called GfsA, involved in Galf antigen biosynthesis. Disruption of gfsA reduced binding of β-Galf-specific antibody EB-A2 to O-glycosylated WscA protein and galactomannoproteins. The results of an in-vitro Galf antigen synthase assay revealed that GfsA has β1,5- or β1,6-galactofuranosyltransferase activity for O-glycans in glycoproteins, uses UDP-d-Galf as a sugar donor, and requires a divalent manganese cation for activity. GfsA was found to be localized at the Golgi apparatus based on cellular fractionation experiments. ΔgfsA cells exhibited an abnormal morphology characterized by poor hyphal extension, hyphal curvature and limited formation of conidia. Several gfsA orthologues were identified in members of the Pezizomycotina subphylum of Ascomycota, including the human pathogen Aspergillus fumigatus. To our knowledge, this is the first characterization of a Fungal β-galactofuranosyltransferase, which was shown to be involved in Galf antigen biosynthesis of O-glycans in the Golgi.

Karina Kizjakina - One of the best experts on this subject based on the ideXlab platform.

  • gfsa encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of o glycan in aspergillus nidulans and aspergillus fumigatus
    Molecular Microbiology, 2013
    Co-Authors: Yuji Komachi, Haruka Motomatsu, Karina Kizjakina, Shintaro Hatakeyama, Keisuke Ekino, Taiki Futagami, Masatoshi Goto, Kaoru Takegawa, Pablo Sobrado, Yoshiyuki Nomura
    Abstract:

    The cell walls of filamentous fungi in the genus Aspergillus have galactofuranose-containing polysaccharides and glycoconjugates, including O-glycans, N-glycans, Fungal-Type galactomannan, and glycosylinositolphosphoceramide, which are important for cell wall integrity. Here, we attempted to identify galactofuranosyltransferases that couple galactofuranose monomers onto other wall components in Aspergillus nidulans. Using reverse-genetic and biochemical approaches, we identified that the AN8677 gene encoded a galactofuranosyltransferase, which we called GfsA, involved in galactofuranose (Galf) antigen biosynthesis. Disruption of gfsA reduced binding of β-Galf-specific antibody EB-A2 to O-glycosylated WscA protein and galactomannoproteins. The results of an in-vitro galactofuranose antigen synthase assay revealed that GfsA has β1,5- or β1,6- galactofuranosyltransferase activity for O-glycans in glycoproteins, uses UDP-D-galactofuranose as a sugar donor, and requires a divalent manganese cation for activity. GfsA was found to be localized at the Golgi apparatus based on cellular fractionation experiments. ΔgfsA cells exhibited an abnormal morphology characterized by poor hyphal extension, hyphal curvature, and limited formation of conidia. Several gfsA orthologs were identified in members of the Pezizomycotina subphylum of Ascomycota, including the human pathogen Aspergillus fumigatus. To our knowledge, this is the first characterization of a Fungal β-galactofuranosyltransferase, which was shown to be involved in galactofuranose antigen biosynthesis of O-glycans in the Golgi.

  • gfsA encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of O-glycan in Aspergillus nidulans and Aspergillus fumigatus
    Molecular Microbiology, 2013
    Co-Authors: Yuji Komachi, Haruka Motomatsu, Karina Kizjakina, Shintaro Hatakeyama, Keisuke Ekino, Taiki Futagami, Masatoshi Goto, Kaoru Takegawa, Pablo Sobrado, Yoshiyuki Nomura
    Abstract:

    The cells walls of filamentous fungi in the genus Aspergillus have galactofuranose (Galf)-containing polysaccharides and glycoconjugates, including O-glycans, N-glycans, Fungal-Type galactomannan and glycosylinositolphosphoceramide, which are important for cell wall integrity. Here, we attempted to identify galactofuranosyltransferases that couple Galf monomers onto other wall components in Aspergillus nidulans. Using reverse-genetic and biochemical approaches, we identified that the AN8677 gene encoded a galactofuranosyltransferase, which we called GfsA, involved in Galf antigen biosynthesis. Disruption of gfsA reduced binding of β-Galf-specific antibody EB-A2 to O-glycosylated WscA protein and galactomannoproteins. The results of an in-vitro Galf antigen synthase assay revealed that GfsA has β1,5- or β1,6-galactofuranosyltransferase activity for O-glycans in glycoproteins, uses UDP-d-Galf as a sugar donor, and requires a divalent manganese cation for activity. GfsA was found to be localized at the Golgi apparatus based on cellular fractionation experiments. ΔgfsA cells exhibited an abnormal morphology characterized by poor hyphal extension, hyphal curvature and limited formation of conidia. Several gfsA orthologues were identified in members of the Pezizomycotina subphylum of Ascomycota, including the human pathogen Aspergillus fumigatus. To our knowledge, this is the first characterization of a Fungal β-galactofuranosyltransferase, which was shown to be involved in Galf antigen biosynthesis of O-glycans in the Golgi.

Haruka Motomatsu - One of the best experts on this subject based on the ideXlab platform.

  • gfsa encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of o glycan in aspergillus nidulans and aspergillus fumigatus
    Molecular Microbiology, 2013
    Co-Authors: Yuji Komachi, Haruka Motomatsu, Karina Kizjakina, Shintaro Hatakeyama, Keisuke Ekino, Taiki Futagami, Masatoshi Goto, Kaoru Takegawa, Pablo Sobrado, Yoshiyuki Nomura
    Abstract:

    The cell walls of filamentous fungi in the genus Aspergillus have galactofuranose-containing polysaccharides and glycoconjugates, including O-glycans, N-glycans, Fungal-Type galactomannan, and glycosylinositolphosphoceramide, which are important for cell wall integrity. Here, we attempted to identify galactofuranosyltransferases that couple galactofuranose monomers onto other wall components in Aspergillus nidulans. Using reverse-genetic and biochemical approaches, we identified that the AN8677 gene encoded a galactofuranosyltransferase, which we called GfsA, involved in galactofuranose (Galf) antigen biosynthesis. Disruption of gfsA reduced binding of β-Galf-specific antibody EB-A2 to O-glycosylated WscA protein and galactomannoproteins. The results of an in-vitro galactofuranose antigen synthase assay revealed that GfsA has β1,5- or β1,6- galactofuranosyltransferase activity for O-glycans in glycoproteins, uses UDP-D-galactofuranose as a sugar donor, and requires a divalent manganese cation for activity. GfsA was found to be localized at the Golgi apparatus based on cellular fractionation experiments. ΔgfsA cells exhibited an abnormal morphology characterized by poor hyphal extension, hyphal curvature, and limited formation of conidia. Several gfsA orthologs were identified in members of the Pezizomycotina subphylum of Ascomycota, including the human pathogen Aspergillus fumigatus. To our knowledge, this is the first characterization of a Fungal β-galactofuranosyltransferase, which was shown to be involved in galactofuranose antigen biosynthesis of O-glycans in the Golgi.

  • gfsA encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of O-glycan in Aspergillus nidulans and Aspergillus fumigatus
    Molecular Microbiology, 2013
    Co-Authors: Yuji Komachi, Haruka Motomatsu, Karina Kizjakina, Shintaro Hatakeyama, Keisuke Ekino, Taiki Futagami, Masatoshi Goto, Kaoru Takegawa, Pablo Sobrado, Yoshiyuki Nomura
    Abstract:

    The cells walls of filamentous fungi in the genus Aspergillus have galactofuranose (Galf)-containing polysaccharides and glycoconjugates, including O-glycans, N-glycans, Fungal-Type galactomannan and glycosylinositolphosphoceramide, which are important for cell wall integrity. Here, we attempted to identify galactofuranosyltransferases that couple Galf monomers onto other wall components in Aspergillus nidulans. Using reverse-genetic and biochemical approaches, we identified that the AN8677 gene encoded a galactofuranosyltransferase, which we called GfsA, involved in Galf antigen biosynthesis. Disruption of gfsA reduced binding of β-Galf-specific antibody EB-A2 to O-glycosylated WscA protein and galactomannoproteins. The results of an in-vitro Galf antigen synthase assay revealed that GfsA has β1,5- or β1,6-galactofuranosyltransferase activity for O-glycans in glycoproteins, uses UDP-d-Galf as a sugar donor, and requires a divalent manganese cation for activity. GfsA was found to be localized at the Golgi apparatus based on cellular fractionation experiments. ΔgfsA cells exhibited an abnormal morphology characterized by poor hyphal extension, hyphal curvature and limited formation of conidia. Several gfsA orthologues were identified in members of the Pezizomycotina subphylum of Ascomycota, including the human pathogen Aspergillus fumigatus. To our knowledge, this is the first characterization of a Fungal β-galactofuranosyltransferase, which was shown to be involved in Galf antigen biosynthesis of O-glycans in the Golgi.