Galactic Evolution

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 360 Experts worldwide ranked by ideXlab platform

Carlos Allende Prieto - One of the best experts on this subject based on the ideXlab platform.

  • the fourteenth data release of the sloan digital sky survey first spectroscopic data from the extended baryon oscillation spectroscopic survey and from the second phase of the apache point observatory Galactic Evolution experiment
    Astrophysical Journal Supplement Series, 2018
    Co-Authors: Bela Abolfathi, Carlos Allende Prieto, Brett H Andrews, D S Aguado, Gabriela Aguilar, Andres Almeida, Tonima Tasnim Ananna, F Anders, Scott F Anderson, Borja Anguiano
    Abstract:

    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014–2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V.

  • the apache point observatory Galactic Evolution experiment apogee
    The Astronomical Journal, 2017
    Co-Authors: Steven R Majewski, Basil Blank, Carlos Allende Prieto, Ricardo P Schiavon, Peter M Frinchaboy, Dmitry Bizyaev, Robert H Barkhouser, Sophia Brunner
    Abstract:

    National Science Foundation [AST-1109178, AST-1616636]; Gemini Observatory; Spanish Ministry of Economy and Competitiveness [AYA-2011-27754]; NASA [NNX12AE17G]; Hungarian Academy of Sciences; Hungarian NKFI of the Hungarian National Research, Development and Innovation Office [K-119517]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science

  • the fourteenth data release of the sloan digital sky survey first spectroscopic data from the extended baryon oscillation spectroscopic survey and from the second phase of the apache point observatory Galactic Evolution experiment
    arXiv: Astrophysics of Galaxies, 2017
    Co-Authors: Bela Abolfathi, Carlos Allende Prieto, Brett H Andrews, D S Aguado, Gabriela Aguilar, Andres Almeida, Tonima Tasnim Ananna, F Anders, Scott F Anderson, Borja Anguiano
    Abstract:

    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.

  • sloan digital sky survey iv mapping the milky way nearby galaxies and the distant universe
    arXiv: Astrophysics of Galaxies, 2017
    Co-Authors: Michael R Blanton, Carlos Allende Prieto, Bela Abolfathi, Andres Almeida, F Anders, Scott F Anderson, Matthew A Bershady, Franco D Albareti, J Alonsogarcia, Brett H Andrews
    Abstract:

    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratio in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially-resolved spectroscopy for thousands of nearby galaxies (median redshift of z = 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between redshifts z = 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGN and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5-meter Sloan Foundation Telescope at Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5-meter du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in July 2016.

  • infrared high resolution integrated light spectral analyses of m31 globular clusters from apogee
    The Astrophysical Journal, 2016
    Co-Authors: Charli M Sakari, Carlos Allende Prieto, Matthew D. Shetrone, Ricardo P Schiavon, Timothy C Beers, Dmitry Bizyaev, Nelson Caldwell
    Abstract:

    Chemical abundances are presented for 25 M31 globular clusters (GCs), based on moderately high resolution (R = 22,500) H-band integrated light (IL) spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). Infrared (IR) spectra offer lines from new elements, lines of different strengths, and lines at higher excitation potentials compared to the optical. Integrated abundances of C, N, and O are derived from CO, CN, and OH molecular features, while Fe, Na, Mg, Al, Si, K, Ca, and Ti abundances are derived from atomic features. These abundances are compared to previous results from the optical, demonstrating the validity and value of IR IL analyses. The CNO abundances are consistent with typical tip of the red giant branch stellar abundances but are systematically offset from optical Lick index abundances. With a few exceptions, the other abundances agree between the optical and the IR within the 1σ uncertainties. The first integrated K abundances are also presented and demonstrate that K tracks the α elements. The combination of IR and optical abundances allows better determinations of GC properties and enables probes of the multiple populations in extraGalactic GCs. In particular, the integrated effects of the Na/O anticorrelation can be directly examined for the first time.

Allende C Prieto - One of the best experts on this subject based on the ideXlab platform.

  • chemical abundances of main sequence turnoff subgiant and red giant stars from apogee spectra ii atomic diffusion in m67 stars
    The Astrophysical Journal, 2019
    Co-Authors: Diogo Souto, Katia Cunha, Verne V. Smith, Allende C Prieto, Marc H Pinsonneault, R Garciadias, Jo Bovy, D A Garciahernandez
    Abstract:

    Chemical abundances for 15 elements (C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, and Ni) are presented for 83 stellar members of the 4 Gyr old solar-metallicity open cluster M67. The sample contains stars spanning a wide range of Evolutionary phases, from G dwarfs to red clump stars. The abundances were derived from near-IR (λ1.5-1.7 μm) high-resolution spectra (R ,F= ,F22,500) from the SDSS-IV/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. A 1D local thermodynamic equilibrium abundance analysis was carried out using the APOGEE synthetic spectral libraries, via χ 2 minimization of the synthetic and observed spectra with the qASPCAP code. We found significant abundance differences (∼0.05-0.30 dex) between the M67 member stars as a function of the stellar mass (or position on the Hertzsprung-Russell diagram), where the abundance patterns exhibit a general depletion (in [X/H]) in stars at the main-sequence turnoff. The amount of the depletion is different for different elements. We find that atomic diffusion models provide, in general, good agreement with the abundance trends for most chemical species, supporting recent studies indicating that measurable atomic diffusion operates in M67 stars.

  • chemical abundances of main sequence turnoff subgiant and red giant stars from apogee spectra ii atomic diffusion in m67 stars
    The Astrophysical Journal, 2019
    Co-Authors: Diogo Souto, Katia Cunha, Verne V. Smith, Allende C Prieto, Marc H Pinsonneault, R Garciadias, Jo Bovy, D A Garciahernandez
    Abstract:

    Chemical abundances for 15 elements (C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, and Ni) are presented for 83 stellar members of the 4 Gyr old solar-metallicity open cluster M67. The sample contains stars spanning a wide range of Evolutionary phases, from G dwarfs to red clump stars. The abundances were derived from near-IR (λ1.5-1.7 μm) high-resolution spectra (R ,F= ,F22,500) from the SDSS-IV/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. A 1D local thermodynamic equilibrium abundance analysis was carried out using the APOGEE synthetic spectral libraries, via χ 2 minimization of the synthetic and observed spectra with the qASPCAP code. We found significant abundance differences (∼0.05-0.30 dex) between the M67 member stars as a function of the stellar mass (or position on the Hertzsprung-Russell diagram), where the abundance patterns exhibit a general depletion (in [X/H]) in stars at the main-sequence turnoff. The amount of the depletion is different for different elements. We find that atomic diffusion models provide, in general, good agreement with the abundance trends for most chemical species, supporting recent studies indicating that measurable atomic diffusion operates in M67 stars.

  • chemical abundances of main sequence turnoff subgiant and red giant stars from apogee spectra i signatures of diffusion in the open cluster m67
    The Astrophysical Journal, 2018
    Co-Authors: Diogo Souto, Katia Cunha, Verne V. Smith, Allende C Prieto, Marc H Pinsonneault, D A Garciahernandez, Parker H Holzer, Peter M Frinchaboy
    Abstract:

    Detailed chemical abundance distributions for 14 elements are derived for eight high-probability stellar members of the solar metallicity old open cluster M67 with an age of ∼4 Gyr. The eight stars consist of four pairs, with each pair occupying a distinct phase of stellar Evolution: two G dwarfs, two turnoff stars, two G subgiants, and two red clump (RC) K giants. The abundance analysis uses near-IR high-resolution spectra (λ1.5-1.7 μm) from the Apache Point Observatory Galactic Evolution Experiment survey and derives abundances for C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe. Our derived stellar parameters and metallicity for 2M08510076+1153115 suggest that this star is a solar twin, exhibiting abundance differences relative to the Sun of ≤0.04 dex for all elements. Chemical homogeneity is found within each class of stars (∼0.02 dex), while significant abundance variations (∼0.05-0.20 dex) are found across the different Evolutionary phases; the turnoff stars typically have the lowest abundances, while the RCs tend to have the largest. Non-LTE corrections to the LTE-derived abundances are unlikely to explain the differences. A detailed comparison of the derived Fe, Mg, Si, and Ca abundances with recently published surface abundances from stellar models that include chemical diffusion provides a good match between the observed and predicted abundances as a function of stellar mass. Such agreement would indicate the detection of chemical diffusion processes in the stellar members of M67. (Less)

  • chemical abundances of main sequence turnoff subgiant and red giant stars from apogee spectra i signatures of diffusion in the open cluster m67
    The Astrophysical Journal, 2018
    Co-Authors: Diogo Souto, Katia Cunha, Verne V. Smith, Allende C Prieto, Marc H Pinsonneault, D A Garciahernandez, Parker H Holzer, Peter M Frinchaboy
    Abstract:

    Detailed chemical abundance distributions for 14 elements are derived for eight high-probability stellar members of the solar metallicity old open cluster M67 with an age of ∼4 Gyr. The eight stars consist of four pairs, with each pair occupying a distinct phase of stellar Evolution: two G dwarfs, two turnoff stars, two G subgiants, and two red clump (RC) K giants. The abundance analysis uses near-IR high-resolution spectra (λ1.5-1.7 μm) from the Apache Point Observatory Galactic Evolution Experiment survey and derives abundances for C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe. Our derived stellar parameters and metallicity for 2M08510076+1153115 suggest that this star is a solar twin, exhibiting abundance differences relative to the Sun of ≤0.04 dex for all elements. Chemical homogeneity is found within each class of stars (∼0.02 dex), while significant abundance variations (∼0.05-0.20 dex) are found across the different Evolutionary phases; the turnoff stars typically have the lowest abundances, while the RCs tend to have the largest. Non-LTE corrections to the LTE-derived abundances are unlikely to explain the differences. A detailed comparison of the derived Fe, Mg, Si, and Ca abundances with recently published surface abundances from stellar models that include chemical diffusion provides a good match between the observed and predicted abundances as a function of stellar mass. Such agreement would indicate the detection of chemical diffusion processes in the stellar members of M67. (Less)

  • the sdss iii apogee spectral line list for h band spectroscopy
    Astrophysical Journal Supplement Series, 2015
    Co-Authors: Matthew D. Shetrone, Katia Cunha, Verne V. Smith, Allende C Prieto, Dmitry Bizyaev, Jon A. Holtzman, J E Lawler, Julie A Johnson, A Garcia E Perez
    Abstract:

    We present the H-band spectral line lists adopted by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). The APOGEE line lists comprise astrophysical, theoretical, and laboratory sources from the literature, as well as newly evaluated astrophysical oscillator strengths and damping parameters. We discuss the construction of the APOGEE line list, which is one of the critical inputs for the APOGEE Stellar Parameters and Chemical Abundances Pipeline, and present three different versions that have been used at various stages of the project. The methodology for the newly calculated astrophysical line lists is reviewed. The largest of these three line lists contains 134,457 molecular and atomic transitions. In addition to the format adopted to store the data, the line lists are available in MOOG, Synspec, and Turbospectrum formats. The limitations of the line lists along with guidance for its use on different spectral types are discussed. We also present a list of H-band spectral features that are either poorly represented or completely missing in our line list. This list is based on the average of a large number of spectral fit residuals for APOGEE observations spanning a wide range of stellar parameters.

Dmitry Bizyaev - One of the best experts on this subject based on the ideXlab platform.

  • the apache point observatory Galactic Evolution experiment apogee
    The Astronomical Journal, 2017
    Co-Authors: Steven R Majewski, Basil Blank, Carlos Allende Prieto, Ricardo P Schiavon, Peter M Frinchaboy, Dmitry Bizyaev, Robert H Barkhouser, Sophia Brunner
    Abstract:

    National Science Foundation [AST-1109178, AST-1616636]; Gemini Observatory; Spanish Ministry of Economy and Competitiveness [AYA-2011-27754]; NASA [NNX12AE17G]; Hungarian Academy of Sciences; Hungarian NKFI of the Hungarian National Research, Development and Innovation Office [K-119517]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science

  • infrared high resolution integrated light spectral analyses of m31 globular clusters from apogee
    The Astrophysical Journal, 2016
    Co-Authors: Charli M Sakari, Carlos Allende Prieto, Matthew D. Shetrone, Ricardo P Schiavon, Timothy C Beers, Dmitry Bizyaev, Nelson Caldwell
    Abstract:

    Chemical abundances are presented for 25 M31 globular clusters (GCs), based on moderately high resolution (R = 22,500) H-band integrated light (IL) spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). Infrared (IR) spectra offer lines from new elements, lines of different strengths, and lines at higher excitation potentials compared to the optical. Integrated abundances of C, N, and O are derived from CO, CN, and OH molecular features, while Fe, Na, Mg, Al, Si, K, Ca, and Ti abundances are derived from atomic features. These abundances are compared to previous results from the optical, demonstrating the validity and value of IR IL analyses. The CNO abundances are consistent with typical tip of the red giant branch stellar abundances but are systematically offset from optical Lick index abundances. With a few exceptions, the other abundances agree between the optical and the IR within the 1σ uncertainties. The first integrated K abundances are also presented and demonstrate that K tracks the α elements. The combination of IR and optical abundances allows better determinations of GC properties and enables probes of the multiple populations in extraGalactic GCs. In particular, the integrated effects of the Na/O anticorrelation can be directly examined for the first time.

  • infrared high resolution integrated light spectral analyses of m31 globular clusters from apogee
    arXiv: Astrophysics of Galaxies, 2016
    Co-Authors: Charli M Sakari, Carlos Allende Prieto, Matthew D. Shetrone, Ricardo P Schiavon, Timothy C Beers, Dmitry Bizyaev, Nelson Caldwell
    Abstract:

    Chemical abundances are presented for 25 M31 globular clusters (GCs), based on moderately high resolution (R = 22, 500) H-band integrated light spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). Infrared spectra offer lines from new elements, of different strengths, and at higher excitation potentials compared to the optical. Integrated abundances of C, N, and O are derived from CO, CN, and OH molecular features, while Fe, Na, Mg, Al, Si, K, Ca, and Ti abundances are derived from atomic features. These abundances are compared to previous results from the optical, demonstrating the validity and value of infrared integrated light analyses. The CNO abundances are consistent with typical tip of the red giant branch stellar abundances, but are systematically offset from optical, Lick index abundances. With a few exceptions, the other abundances agree between the optical and the infrared within the 1{\sigma} uncertainties. The first integrated K abundances are also presented, and demonstrate that K tracks the alpha-elements. The combination of infrared and optical abundances allows better determinations of GC properties, and enables probes of the multiple populations in extraGalactic GCs. In particular, the integrated effects of the Na/O anticorrelation can be directly examined for the first time.

  • the sdss iii apogee spectral line list for h band spectroscopy
    Astrophysical Journal Supplement Series, 2015
    Co-Authors: Matthew D. Shetrone, Katia Cunha, Verne V. Smith, Allende C Prieto, Dmitry Bizyaev, Jon A. Holtzman, J E Lawler, Julie A Johnson, A Garcia E Perez
    Abstract:

    We present the H-band spectral line lists adopted by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). The APOGEE line lists comprise astrophysical, theoretical, and laboratory sources from the literature, as well as newly evaluated astrophysical oscillator strengths and damping parameters. We discuss the construction of the APOGEE line list, which is one of the critical inputs for the APOGEE Stellar Parameters and Chemical Abundances Pipeline, and present three different versions that have been used at various stages of the project. The methodology for the newly calculated astrophysical line lists is reviewed. The largest of these three line lists contains 134,457 molecular and atomic transitions. In addition to the format adopted to store the data, the line lists are available in MOOG, Synspec, and Turbospectrum formats. The limitations of the line lists along with guidance for its use on different spectral types are discussed. We also present a list of H-band spectral features that are either poorly represented or completely missing in our line list. This list is based on the average of a large number of spectral fit residuals for APOGEE observations spanning a wide range of stellar parameters.

  • the data reduction pipeline for the apache point observatory Galactic Evolution experiment
    The Astronomical Journal, 2015
    Co-Authors: Carlos Allende Prieto, David L Nidever, Dmitry Bizyaev, Jon A. Holtzman, Stephane Beland, Chad F Bender, Adam Burton
    Abstract:

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the Sloan Digital Sky Survey III, explores the stellar populations of the Milky Way using the Sloan 2.5-m telescope linked to a high resolution (R ~ 22,500), near-infrared (1.51–1.70 µm) spectrograph with 300 optical fibers. For over 150,000 predominantly red giant branch stars that APOGEE targeted across the Galactic bulge, disks and halo, the collected high signal-to-noise ratio (>100 per half-resolution element) spectra provide accurate (~0.1 km s-1) RVs, stellar atmospheric parameters, and precise (lesssim0.1 dex) chemical abundances for about 15 chemical species. Here we describe the basic APOGEE data reduction software that reduces multiple 3D raw data cubes into calibrated, well-sampled, combined 1D spectra, as implemented for the SDSS-III/APOGEE data releases (DR10, DR11 and DR12). The processing of the near-IR spectral data of APOGEE presents some challenges for reduction, including automated sky subtraction and telluric correction over a 3°-diameter field and the combination of spectrally dithered spectra. We also discuss areas for future improvement.

Peter M Frinchaboy - One of the best experts on this subject based on the ideXlab platform.

  • chemical abundances of main sequence turnoff subgiant and red giant stars from apogee spectra i signatures of diffusion in the open cluster m67
    The Astrophysical Journal, 2018
    Co-Authors: Diogo Souto, Katia Cunha, Verne V. Smith, Allende C Prieto, Marc H Pinsonneault, D A Garciahernandez, Parker H Holzer, Peter M Frinchaboy
    Abstract:

    Detailed chemical abundance distributions for 14 elements are derived for eight high-probability stellar members of the solar metallicity old open cluster M67 with an age of ∼4 Gyr. The eight stars consist of four pairs, with each pair occupying a distinct phase of stellar Evolution: two G dwarfs, two turnoff stars, two G subgiants, and two red clump (RC) K giants. The abundance analysis uses near-IR high-resolution spectra (λ1.5-1.7 μm) from the Apache Point Observatory Galactic Evolution Experiment survey and derives abundances for C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe. Our derived stellar parameters and metallicity for 2M08510076+1153115 suggest that this star is a solar twin, exhibiting abundance differences relative to the Sun of ≤0.04 dex for all elements. Chemical homogeneity is found within each class of stars (∼0.02 dex), while significant abundance variations (∼0.05-0.20 dex) are found across the different Evolutionary phases; the turnoff stars typically have the lowest abundances, while the RCs tend to have the largest. Non-LTE corrections to the LTE-derived abundances are unlikely to explain the differences. A detailed comparison of the derived Fe, Mg, Si, and Ca abundances with recently published surface abundances from stellar models that include chemical diffusion provides a good match between the observed and predicted abundances as a function of stellar mass. Such agreement would indicate the detection of chemical diffusion processes in the stellar members of M67. (Less)

  • chemical abundances of main sequence turnoff subgiant and red giant stars from apogee spectra i signatures of diffusion in the open cluster m67
    The Astrophysical Journal, 2018
    Co-Authors: Diogo Souto, Katia Cunha, Verne V. Smith, Allende C Prieto, Marc H Pinsonneault, D A Garciahernandez, Parker H Holzer, Peter M Frinchaboy
    Abstract:

    Detailed chemical abundance distributions for 14 elements are derived for eight high-probability stellar members of the solar metallicity old open cluster M67 with an age of ∼4 Gyr. The eight stars consist of four pairs, with each pair occupying a distinct phase of stellar Evolution: two G dwarfs, two turnoff stars, two G subgiants, and two red clump (RC) K giants. The abundance analysis uses near-IR high-resolution spectra (λ1.5-1.7 μm) from the Apache Point Observatory Galactic Evolution Experiment survey and derives abundances for C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe. Our derived stellar parameters and metallicity for 2M08510076+1153115 suggest that this star is a solar twin, exhibiting abundance differences relative to the Sun of ≤0.04 dex for all elements. Chemical homogeneity is found within each class of stars (∼0.02 dex), while significant abundance variations (∼0.05-0.20 dex) are found across the different Evolutionary phases; the turnoff stars typically have the lowest abundances, while the RCs tend to have the largest. Non-LTE corrections to the LTE-derived abundances are unlikely to explain the differences. A detailed comparison of the derived Fe, Mg, Si, and Ca abundances with recently published surface abundances from stellar models that include chemical diffusion provides a good match between the observed and predicted abundances as a function of stellar mass. Such agreement would indicate the detection of chemical diffusion processes in the stellar members of M67. (Less)

  • the apache point observatory Galactic Evolution experiment apogee
    The Astronomical Journal, 2017
    Co-Authors: Steven R Majewski, Basil Blank, Carlos Allende Prieto, Ricardo P Schiavon, Peter M Frinchaboy, Dmitry Bizyaev, Robert H Barkhouser, Sophia Brunner
    Abstract:

    National Science Foundation [AST-1109178, AST-1616636]; Gemini Observatory; Spanish Ministry of Economy and Competitiveness [AYA-2011-27754]; NASA [NNX12AE17G]; Hungarian Academy of Sciences; Hungarian NKFI of the Hungarian National Research, Development and Innovation Office [K-119517]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science

  • apogee chemical abundances of globular cluster giants in the inner galaxy
    Monthly Notices of the Royal Astronomical Society, 2017
    Co-Authors: Ricardo P Schiavon, Peter M Frinchaboy, Gail Zasowski, Szabolcs Meszaros, Roger E Cohen, B Tang, Jennifer A Johnson, D A Garciahernandez, Salvador Villanova
    Abstract:

    We report chemical abundances obtained by Sloan Digital Sky Survey (SDSS)-III/Apache Point Observatory Galactic Evolution Experiment for giant stars in five globular clusters located within 2.2 kpc of the Galactic Centre. We detect the presence of multiple stellar populations in four of those clusters (NGC 6553, NGC 6528, Terzan 5 and Palomar 6) and find strong evidence for their presence in NGC 6522. All clusters with a large enough sample present a significant spread in the abundances of N, C, Na and Al, with the usual correlations and anticorrelations between various abundances seen in other globular clusters. Our results provide important quantitative constraints on theoretical models for self-enrichment of globular clusters, by testing their predictions for the dependence of yields of elements such as Na, N, C and Al on metallicity. They also confirm that, under the assumption that field N-rich stars originate from globular cluster destruction, they can be used as tracers of their parental systems in the high-metallicity regime.

  • the apache point observatory Galactic Evolution experiment apogee
    arXiv: Instrumentation and Methods for Astrophysics, 2015
    Co-Authors: Steven R Majewski, Basil Blank, Carlos Allende Prieto, Ricardo P Schiavon, Peter M Frinchaboy, Dmitry Bizyaev, Robert H Barkhouser, Sophia Brunner, Adam Burton, R Carrera
    Abstract:

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE), one of the programs in the Sloan Digital Sky Survey III (SDSS-III), has now completed its systematic, homogeneous spectroscopic survey sampling all major populations of the Milky Way. After a three year observing campaign on the Sloan 2.5-m Telescope, APOGEE has collected a half million high resolution (R~22,500), high S/N (>100), infrared (1.51-1.70 microns) spectra for 146,000 stars, with time series information via repeat visits to most of these stars. This paper describes the motivations for the survey and its overall design---hardware, field placement, target selection, operations---and gives an overview of these aspects as well as the data reduction, analysis and products. An index is also given to the complement of technical papers that describe various critical survey components in detail. Finally, we discuss the achieved survey performance and illustrate the variety of potential uses of the data products by way of a number of science demonstrations, which span from time series analysis of stellar spectral variations and radial velocity variations from stellar companions, to spatial maps of kinematics, metallicity and abundance patterns across the Galaxy and as a function of age, to new views of the interstellar medium, the chemistry of star clusters, and the discovery of rare stellar species. As part of SDSS-III Data Release 12, all of the APOGEE data products are now publicly available.

Verne V. Smith - One of the best experts on this subject based on the ideXlab platform.

  • chemical abundances of main sequence turnoff subgiant and red giant stars from apogee spectra ii atomic diffusion in m67 stars
    The Astrophysical Journal, 2019
    Co-Authors: Diogo Souto, Katia Cunha, Verne V. Smith, Allende C Prieto, Marc H Pinsonneault, R Garciadias, Jo Bovy, D A Garciahernandez
    Abstract:

    Chemical abundances for 15 elements (C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, and Ni) are presented for 83 stellar members of the 4 Gyr old solar-metallicity open cluster M67. The sample contains stars spanning a wide range of Evolutionary phases, from G dwarfs to red clump stars. The abundances were derived from near-IR (λ1.5-1.7 μm) high-resolution spectra (R ,F= ,F22,500) from the SDSS-IV/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. A 1D local thermodynamic equilibrium abundance analysis was carried out using the APOGEE synthetic spectral libraries, via χ 2 minimization of the synthetic and observed spectra with the qASPCAP code. We found significant abundance differences (∼0.05-0.30 dex) between the M67 member stars as a function of the stellar mass (or position on the Hertzsprung-Russell diagram), where the abundance patterns exhibit a general depletion (in [X/H]) in stars at the main-sequence turnoff. The amount of the depletion is different for different elements. We find that atomic diffusion models provide, in general, good agreement with the abundance trends for most chemical species, supporting recent studies indicating that measurable atomic diffusion operates in M67 stars.

  • chemical abundances of main sequence turnoff subgiant and red giant stars from apogee spectra ii atomic diffusion in m67 stars
    The Astrophysical Journal, 2019
    Co-Authors: Diogo Souto, Katia Cunha, Verne V. Smith, Allende C Prieto, Marc H Pinsonneault, R Garciadias, Jo Bovy, D A Garciahernandez
    Abstract:

    Chemical abundances for 15 elements (C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, and Ni) are presented for 83 stellar members of the 4 Gyr old solar-metallicity open cluster M67. The sample contains stars spanning a wide range of Evolutionary phases, from G dwarfs to red clump stars. The abundances were derived from near-IR (λ1.5-1.7 μm) high-resolution spectra (R ,F= ,F22,500) from the SDSS-IV/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. A 1D local thermodynamic equilibrium abundance analysis was carried out using the APOGEE synthetic spectral libraries, via χ 2 minimization of the synthetic and observed spectra with the qASPCAP code. We found significant abundance differences (∼0.05-0.30 dex) between the M67 member stars as a function of the stellar mass (or position on the Hertzsprung-Russell diagram), where the abundance patterns exhibit a general depletion (in [X/H]) in stars at the main-sequence turnoff. The amount of the depletion is different for different elements. We find that atomic diffusion models provide, in general, good agreement with the abundance trends for most chemical species, supporting recent studies indicating that measurable atomic diffusion operates in M67 stars.

  • stellar and planetary characterization of the ross 128 exoplanetary system from apogee spectra
    The Astrophysical Journal, 2018
    Co-Authors: Diogo Souto, Katia Cunha, Verne V. Smith, D A Garciahernandez, Cayman T Unterborn, Johanna K Teske, Kevin R Covey, Barbara Rojasayala, Keivan G Stassun
    Abstract:

    The first detailed chemical abundance analysis of the M-dwarf (M4.0) exoplanet-hosting star Ross 128 is presented here, based upon near-infrared (1.5-1.7 μm), high-resolution (R ∼ 22,500) spectra from the SDSS Apache Point Galactic Evolution Experiment survey. We determined precise atmospheric parameters T eff = 3231 ±100 K, log g = 4.96 ±0.11 dex and chemical abundances of eight elements (C, O, Mg, Al, K, Ca, Ti, and Fe), finding Ross 128 to have near solar metallicity ([Fe/H] = +0.03 ± 0.09 dex). The derived results were obtained via spectral synthesis (1D LTE) adopting both MARCS and PHOENIX model atmospheres; stellar parameters and chemical abundances derived from the different adopted models do not show significant offsets. Mass-radius modeling of Ross 128b indicates that it lies below the pure-rock composition curve, suggesting that it contains a mixture of rock and iron, with the relative amounts of each set by the ratio of Fe/Mg. If Ross 128b formed with a subsolar Si abundance, and assuming the planet's composition matches that of the host star, it likely has a larger core size relative to the Earth despite this producing a planet with a Si/Mg abundance ratio ∼34% greater than the Sun. The derived planetary parameters - insolation flux (S Earth = 1.79 ±0.26) and equilibrium temperature (T eq = 294 ±10 K) - support previous findings that Ross 128b is a temperate exoplanet in the inner edge of the habitable zone. (Less)

  • chemical abundances of main sequence turnoff subgiant and red giant stars from apogee spectra i signatures of diffusion in the open cluster m67
    The Astrophysical Journal, 2018
    Co-Authors: Diogo Souto, Katia Cunha, Verne V. Smith, Allende C Prieto, Marc H Pinsonneault, D A Garciahernandez, Parker H Holzer, Peter M Frinchaboy
    Abstract:

    Detailed chemical abundance distributions for 14 elements are derived for eight high-probability stellar members of the solar metallicity old open cluster M67 with an age of ∼4 Gyr. The eight stars consist of four pairs, with each pair occupying a distinct phase of stellar Evolution: two G dwarfs, two turnoff stars, two G subgiants, and two red clump (RC) K giants. The abundance analysis uses near-IR high-resolution spectra (λ1.5-1.7 μm) from the Apache Point Observatory Galactic Evolution Experiment survey and derives abundances for C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe. Our derived stellar parameters and metallicity for 2M08510076+1153115 suggest that this star is a solar twin, exhibiting abundance differences relative to the Sun of ≤0.04 dex for all elements. Chemical homogeneity is found within each class of stars (∼0.02 dex), while significant abundance variations (∼0.05-0.20 dex) are found across the different Evolutionary phases; the turnoff stars typically have the lowest abundances, while the RCs tend to have the largest. Non-LTE corrections to the LTE-derived abundances are unlikely to explain the differences. A detailed comparison of the derived Fe, Mg, Si, and Ca abundances with recently published surface abundances from stellar models that include chemical diffusion provides a good match between the observed and predicted abundances as a function of stellar mass. Such agreement would indicate the detection of chemical diffusion processes in the stellar members of M67. (Less)

  • chemical abundances of main sequence turnoff subgiant and red giant stars from apogee spectra i signatures of diffusion in the open cluster m67
    The Astrophysical Journal, 2018
    Co-Authors: Diogo Souto, Katia Cunha, Verne V. Smith, Allende C Prieto, Marc H Pinsonneault, D A Garciahernandez, Parker H Holzer, Peter M Frinchaboy
    Abstract:

    Detailed chemical abundance distributions for 14 elements are derived for eight high-probability stellar members of the solar metallicity old open cluster M67 with an age of ∼4 Gyr. The eight stars consist of four pairs, with each pair occupying a distinct phase of stellar Evolution: two G dwarfs, two turnoff stars, two G subgiants, and two red clump (RC) K giants. The abundance analysis uses near-IR high-resolution spectra (λ1.5-1.7 μm) from the Apache Point Observatory Galactic Evolution Experiment survey and derives abundances for C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe. Our derived stellar parameters and metallicity for 2M08510076+1153115 suggest that this star is a solar twin, exhibiting abundance differences relative to the Sun of ≤0.04 dex for all elements. Chemical homogeneity is found within each class of stars (∼0.02 dex), while significant abundance variations (∼0.05-0.20 dex) are found across the different Evolutionary phases; the turnoff stars typically have the lowest abundances, while the RCs tend to have the largest. Non-LTE corrections to the LTE-derived abundances are unlikely to explain the differences. A detailed comparison of the derived Fe, Mg, Si, and Ca abundances with recently published surface abundances from stellar models that include chemical diffusion provides a good match between the observed and predicted abundances as a function of stellar mass. Such agreement would indicate the detection of chemical diffusion processes in the stellar members of M67. (Less)