Geissoschizine

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 207 Experts worldwide ranked by ideXlab platform

Yoshio Kase - One of the best experts on this subject based on the ideXlab platform.

  • by Augmenting Gene Expression of
    2016
    Co-Authors: Hitomi Kanno, Zenji Kawakami, Kazushige Mizoguchi, Yasushi Ikarashi, Yoshio Kase
    Abstract:

    Effects of the kampo medicine yokukansan on gene expression of the cystine/ glutamate antiporter system Xc2, which protects against glutamate-induced cytotoxicity, were examined in Pheochromocytoma cells (PC12 cells). Yokukansan inhibited glutamate-induced PC12 cell death. Similar cytoprotective effects were found in Uncaria hook. Experiments to clarify the active compounds revealed that Geissoschizine methyl ether, hirsuteine, hirsutine, and procyanidin B1 in Uncaria hook, had cytoprotective effects. These components enhanced gene expressions of system Xc2 subunits xCT and 4F2hc, and also ameliorated the glutamate-induced decrease in glutathione levels. These results suggest that the cytoprotective effect of yokukansan may be attributed to Geissoschizine methyl ether, hirsuteine, hirsutine, and procyanidin B1 in Uncaria hook

  • in vitro identification of human cytochrome p450 isoforms involved in the metabolism of Geissoschizine methyl ether an active component of the traditional japanese medicine yokukansan
    Xenobiotica, 2016
    Co-Authors: Takashi Matsumoto, Hirotaka Kushida, Hiroaki Nishimura, Junko Watanabe, Takeshi Maruyama, Kazuya Maemura, Yoshio Kase
    Abstract:

    1. Yokukansan (YKS) is a traditional Japanese medicine also called kampo, which has been used to treat neurosis, insomnia, and night crying and peevishness in children. Geissoschizine methyl ether (GM), a major indole alkaloid found in Uncaria hook, has been identified as a major active component of YKS with psychotropic effects. Recently, GM was reported to have a partial agonistic effect on serotonin 5-HT1A receptors. However, there is little published information on GM metabolism in humans, although several studies reported the blood kinetics of GM in rats and humans. In this study, we investigated the GM metabolic pathways and metabolizing enzymes in humans. 2. Using recombinant human cytochrome P450 (CYP) isoforms and polyclonal antibodies to CYP isoforms, we found that GM was metabolized into hydroxylated, dehydrogenated, hydroxylated+dehydrogenated, demethylated and water adduct forms by some CYP isoforms. 3. The relative activity factors in human liver microsomes were calculated to determine the relative contributions of individual CYP isoforms to GM metabolism in human liver microsomes (HLMs). We identified CYP3A4 as the CYP isoform primarily responsible for GM metabolism in human liver microsomes. 4. These findings provide an important basis for understanding the pharmacokinetics and pharmacodynamics of GM and YKS.

  • yokukansan a traditional japanese medicine enhances the l dopa induced rotational response in 6 hydroxydopamine lesioned rats possible inhibition of comt
    Biological & Pharmaceutical Bulletin, 2016
    Co-Authors: Yasushi Ishida, Kazushige Mizoguchi, Kyoji Sekiguchi, Yoshio Kase, Sachiko Imamura, Masahiro Tabuchi, Kosuke Ebihara, Go Koganemaru, Hiroshi Abe
    Abstract:

    The aim of the present study was to investigate the effects of the traditional Japanese medicine yokukansan (YKS) on the function of dopamine (DA) in the rat nigrostriatal system. Unilateral 6-hydroxydopamine lesions were produced in the rat nigrostriatal system. Despite a marked loss in the striatal immunoreactivity of tyrosine hydroxylase on the lesion side, striatal serotonin (5-HT) immunoreactivity was not affected. Treatment using L-3,4-dihydroxyphenylalanine (L-DOPA) in conjunction with benserazide for 15 d induced abnormal involuntary movements (AIMs) such as locomotive (rotational response), axial, forelimb, and orolingual movements in the lesioned rats. The L-DOPA-induced locomotive and axial, but not forelimb and orolingual, AIMs were significantly increased and prolonged by the pre-administration of YKS. We next investigated the effects of YKS on the production of DA from L-DOPA in 5-HT synthetic RIN 14B cells. RIN 14B cells produced DA and its metabolite, 3-methoxytyramine (3-MT), following L-DOPA treatment. YKS significantly augmented DA production and inhibited its metabolism to 3-MT in a manner similar to the catechol-O-methyltransferase (COMT) inhibitor entacapone. YKS and some alkaloids (corynoxeine: CX, Geissoschizine methyl ether: GM) in Uncaria hook, a constituent herb of YKS, also inhibited COMT activity, indicating that the augmenting effect of YKS on L-DOPA-induced DA production in 5-HT synthetic cells was due to the inhibition of COMT by CX and GM. Our results suggest that YKS facilitates the DA supplemental effect of L-DOPA, and that COMT inhibition by CX and GM contributes, at least in part, to the effects of YKS.

  • Metabolic Profiling of the Uncaria Hook Alkaloid Geissoschizine Methyl Ether in Rat and Human Liver Microsomes Using High-Performance Liquid Chromatography with Tandem Mass Spectrometry
    MDPI AG, 2015
    Co-Authors: Hirotaka Kushida, Takashi Matsumoto, Hiroaki Nishimura, Yasushi Igarashi, Junko Watanabe, Kazuya Maemura, Yoshio Kase
    Abstract:

    Geissoschizine methyl ether (GM) is an indole alkaloid found in Uncaria hook, which is a galenical constituent of yokukansan, a traditional Japanese medicine. GM has been identified as the active component responsible for anti-aggressive effects. In this study, the metabolic profiling of GM in rat and human liver microsomes was investigated. Thirteen metabolites of GM were elucidated and identified using a high-performance liquid chromatography with tandem mass spectrometry method, and their molecular structures were proposed on the basis of the characteristics of their precursor ions, product ions, and chromatographic retention times. There were no differences in the metabolites between the rat and human liver microsomes. Among the 13 identified metabolites, there were two demethylation metabolites, one dehydrogenation metabolite, three methylation metabolites, three oxidation metabolites, two water-adduct metabolites, one di-demethylation metabolite, and one water-adduct metabolite followed by oxidation. The metabolic pathways of GM were proposed on the basis of this study. This study will be helpful in understanding the metabolic routes of GM and related Uncaria hook alkaloids, and provide useful information on the pharmacokinetics and pharmacodynamics. This is the first report that describes the separation and identification of GM metabolites in rat and human liver microsomes

  • yokukansan a kampo medicine protects pc12 cells from glutamate induced death by augmenting gene expression of cystine glutamate antiporter system xc
    PLOS ONE, 2014
    Co-Authors: Hitomi Kanno, Zenji Kawakami, Kazushige Mizoguchi, Yasushi Ikarashi, Yoshio Kase
    Abstract:

    Effects of the kampo medicine yokukansan on gene expression of the cystine/glutamate antiporter system Xc−, which protects against glutamate-induced cytotoxicity, were examined in Pheochromocytoma cells (PC12 cells). Yokukansan inhibited glutamate-induced PC12 cell death. Similar cytoprotective effects were found in Uncaria hook. Experiments to clarify the active compounds revealed that Geissoschizine methyl ether, hirsuteine, hirsutine, and procyanidin B1 in Uncaria hook, had cytoprotective effects. These components enhanced gene expressions of system Xc− subunits xCT and 4F2hc, and also ameliorated the glutamate-induced decrease in glutathione levels. These results suggest that the cytoprotective effect of yokukansan may be attributed to Geissoschizine methyl ether, hirsuteine, hirsutine, and procyanidin B1 in Uncaria hook.

Yasushi Ikarashi - One of the best experts on this subject based on the ideXlab platform.

  • gender differences in plasma pharmacokinetics and hepatic metabolism of Geissoschizine methyl ether from uncaria hook in rats
    Journal of Ethnopharmacology, 2021
    Co-Authors: Hirotaka Kushida, Yasushi Ikarashi, Takashi Matsumoto, Hiroaki Nishimura, Masahiro Yamamoto
    Abstract:

    Abstract Ethnopharmacological relevance Geissoschizine methyl ether (GM), an indole alkaloid from Uncaria hook, is an active ingredient in the traditional Japanese Kampo medicine yokukansan, which is used to treat neurosis, insomnia, irritability, and night crying in children. Aim of the study Recent our pharmacokinetic studies suggested that there may be gender differences in the plasma concentrations of GM in rats, but not in humans. However, the details of this difference remain unverified. The purpose of this study was to clarify the reasons for the gender differences in rats. Materials and methods GM plasma pharmacokinetics was compared in male and female rats orally administered yokukansan (4 g/kg). To confirm the involvement of cytochrome P450 (CYP) in GM liver metabolism, GM was incubated with male and female rat liver S9 fraction in the absence or presence of 1-aminobenzotriazole (a nonspecific CYP inhibitor). CYP isoforms involved in GM metabolism were estimated using recombinant rat CYP isoforms and anti-rat CYP antibodies. Results The maximum GM plasma concentrations were significantly higher in female than in male rats. When GM was incubated with rat liver S9 fractions, GM reduction was more striking in male S9 (69.3%) than that in female S9 (10.0%) and was completely blocked with nonspecific CYP inhibitor 1-aminobenzotriazole. Screening experiments using recombinant rat cytochrome P450 (CYP) isoforms showed that CYP1A1, CYP2C6, CYP2C11, CYP2D1, and CYP3A2 were involved in GM metabolism. Of these CYP isoforms, the use of anti-rat CYP antibodies indicated that male-dependent CYP2C11 and CYP3A2 were predominantly involved in the liver microsomal GM metabolism with gender differences. Conclusions These results suggest that the cause of gender differences in plasma GM pharmacokinetics in rats is most likely because of male-dependent CYP2C11 and CYP3A2, and provide also useful information to further evaluate the pharmacological and toxicological effects in future. This study is the first to demonstrate that the gender differences in plasma GM pharmacokinetics in rats are caused by the gender-dependent metabolism of GM.

  • brain distribution of Geissoschizine methyl ether in rats using mass spectrometry imaging analysis
    Scientific Reports, 2020
    Co-Authors: Takashi Matsumoto, Yasushi Ikarashi, Mikina Takiyama, Junko Watanabe, Mitsutoshi Setou
    Abstract:

    Geissoschizine methyl ether (GM) is one of the main active ingredients responsible for ameliorating the behavioral and psychological symptoms of dementia (BPSD) in Kampo medicine yokukansan. GM is mainly metabolized into hydroxylated forms (HM-1/2). However, the brain distributions of GM and HM has not been reported in vivo. In this study, therefore, the plasma concentrations and brain distribution of these compounds were examined in vivo using rats injected intravenously with GM. Plasma concentrations were analyzed using liquid chromatography-tandem mass spectrometry analysis and brain distribution using mass spectrometry imaging analysis. Plasma GM and HM-1 concentrations decreased in the 4 h after injection, whereas the concentration of plasma HM-2 increased at 4 h. In the 0.25 h-brain, GM signals were diffusely observed throughout the brain, including the cerebral cortex, hippocampus, striatum, thalamus, amygdala, cerebellum, and cerebral ventricle. HM signals were detected only in the ventricles of the brain at 4 h. These results suggest that plasma GM enters the brain and distributes in the parenchyma of various brain regions involved in BPSD, while plasma HM does not enter the brain parenchyma. This study is also the first to visually demonstrate the brain distribution of GM and its metabolite in vivo.

  • basic study of drug drug interaction between memantine and the traditional japanese kampo medicine yokukansan
    Molecules, 2018
    Co-Authors: Takashi Matsumoto, Zenji Kawakami, Kazushige Mizoguchi, Kyoji Sekiguchi, Yasushi Ikarashi, Junko Watanabe, Masahiro Yamamoto
    Abstract:

    Several basic pharmacokinetic and pharmacological studies were conducted as part of a group of studies to clarify the drug-drug interaction (DDI) between memantine (MEM), a drug used to treat Alzheimer’s disease, and yokukansan (YKS), a traditional Japanese Kampo medicine used to treat behavioral and psychological symptoms of dementia. The pharmacokinetic studies showed that there were no statistically significant differences in MEM concentrations in the plasma, brain, and urine between mice treated with MEM alone and with MEM plus YKS. Regarding candidate active ingredients of YKS, there were also no statistically significant differences in concentrations of Geissoschizine methyl ether in the plasma and brain, urine, glycyrrhetinic acid in the plasma, and isoliquiritigenin in the urine, in mice treated with YKS alone or with MEM plus YKS. The pharmacological studies showed that isoliquiritigenin, which has an N-methyl-d-aspartic acid (NMDA) receptor antagonistic effect, did not affect the inhibitory effect of MEM on NMDA-induced intracellular Ca2+ influx in primary cultured rat cortical neurons. Moreover, YKS did not affect either the ameliorative effects of MEM on NMDA-induced learning and memory impairment, or the MEM-induced decrease in locomotor activities in mice. These results suggest that there is probably no pharmacokinetic or pharmacological interaction between MEM and YKS in mice, but more detailed studies are needed in the future. Our findings provide important information for future studies, to clarify the DDI more regarding the efficacy and safety of combined use of these drugs in a clinical situation.

  • serotonin receptor binding characteristics of Geissoschizine methyl ether an indole alkaloid in uncaria hook
    Current Medicinal Chemistry, 2017
    Co-Authors: Yasushi Ikarashi, Kyoji Sekiguchi, Kazushige Mizoguchi
    Abstract:

    Background Geissoschizine methyl ether (GM) is one of the indole alkaloids in Uncaria hook, and an active ingredient of yokukansan (YKS) that improves behavioral and psychological symptoms of dementia (BPSD) in patients with several types of dementia. The pharmacological action of GM has been related to various serotonin (5-HT) receptor subtypes. Objective The aim of this article is to review the binding characteristics of GM to the 5-HT receptor subtypes in the brains using our own data and previous findings. Method Competitive receptor-binding and agonist/antagonist activity assays for several 5-HT receptor subtypes were performed. Moreover, the articles describing pharmacokinetics and brain distribution of GM were searched in PubMed. Results GM bound the following 5-HT receptor subtypes: 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5- HT4, 5-HT5A, 5-HT6, and 5-HT7. Among these receptors, GM had partial agonistic activity for 5-HT1A receptors and antagonistic activity for 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7 receptors. Also, GM was metabolized by various CYP isoforms, mainly CYP3A4. Parent/unchanged GM was detected in both the blood and brain of rats after oral administration of YKS. In the brains, GM was presumed to bind to 5- HT1A, 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7 receptors on neuron-like large cells mainly in the frontal cortex. Conclusion These results suggest that GM is a pharmacologically important alkaloid that regulates various serotonergic activities or functions by binding to multiple 5-HT receptor subtypes. Thus, this review provides recent 5-HT receptor-related evidence that GM is partly responsible for pharmacological effects of YKS.

  • by Augmenting Gene Expression of
    2016
    Co-Authors: Hitomi Kanno, Zenji Kawakami, Kazushige Mizoguchi, Yasushi Ikarashi, Yoshio Kase
    Abstract:

    Effects of the kampo medicine yokukansan on gene expression of the cystine/ glutamate antiporter system Xc2, which protects against glutamate-induced cytotoxicity, were examined in Pheochromocytoma cells (PC12 cells). Yokukansan inhibited glutamate-induced PC12 cell death. Similar cytoprotective effects were found in Uncaria hook. Experiments to clarify the active compounds revealed that Geissoschizine methyl ether, hirsuteine, hirsutine, and procyanidin B1 in Uncaria hook, had cytoprotective effects. These components enhanced gene expressions of system Xc2 subunits xCT and 4F2hc, and also ameliorated the glutamate-induced decrease in glutathione levels. These results suggest that the cytoprotective effect of yokukansan may be attributed to Geissoschizine methyl ether, hirsuteine, hirsutine, and procyanidin B1 in Uncaria hook

Takashi Matsumoto - One of the best experts on this subject based on the ideXlab platform.

  • gender differences in plasma pharmacokinetics and hepatic metabolism of Geissoschizine methyl ether from uncaria hook in rats
    Journal of Ethnopharmacology, 2021
    Co-Authors: Hirotaka Kushida, Yasushi Ikarashi, Takashi Matsumoto, Hiroaki Nishimura, Masahiro Yamamoto
    Abstract:

    Abstract Ethnopharmacological relevance Geissoschizine methyl ether (GM), an indole alkaloid from Uncaria hook, is an active ingredient in the traditional Japanese Kampo medicine yokukansan, which is used to treat neurosis, insomnia, irritability, and night crying in children. Aim of the study Recent our pharmacokinetic studies suggested that there may be gender differences in the plasma concentrations of GM in rats, but not in humans. However, the details of this difference remain unverified. The purpose of this study was to clarify the reasons for the gender differences in rats. Materials and methods GM plasma pharmacokinetics was compared in male and female rats orally administered yokukansan (4 g/kg). To confirm the involvement of cytochrome P450 (CYP) in GM liver metabolism, GM was incubated with male and female rat liver S9 fraction in the absence or presence of 1-aminobenzotriazole (a nonspecific CYP inhibitor). CYP isoforms involved in GM metabolism were estimated using recombinant rat CYP isoforms and anti-rat CYP antibodies. Results The maximum GM plasma concentrations were significantly higher in female than in male rats. When GM was incubated with rat liver S9 fractions, GM reduction was more striking in male S9 (69.3%) than that in female S9 (10.0%) and was completely blocked with nonspecific CYP inhibitor 1-aminobenzotriazole. Screening experiments using recombinant rat cytochrome P450 (CYP) isoforms showed that CYP1A1, CYP2C6, CYP2C11, CYP2D1, and CYP3A2 were involved in GM metabolism. Of these CYP isoforms, the use of anti-rat CYP antibodies indicated that male-dependent CYP2C11 and CYP3A2 were predominantly involved in the liver microsomal GM metabolism with gender differences. Conclusions These results suggest that the cause of gender differences in plasma GM pharmacokinetics in rats is most likely because of male-dependent CYP2C11 and CYP3A2, and provide also useful information to further evaluate the pharmacological and toxicological effects in future. This study is the first to demonstrate that the gender differences in plasma GM pharmacokinetics in rats are caused by the gender-dependent metabolism of GM.

  • brain distribution of Geissoschizine methyl ether in rats using mass spectrometry imaging analysis
    Scientific Reports, 2020
    Co-Authors: Takashi Matsumoto, Yasushi Ikarashi, Mikina Takiyama, Junko Watanabe, Mitsutoshi Setou
    Abstract:

    Geissoschizine methyl ether (GM) is one of the main active ingredients responsible for ameliorating the behavioral and psychological symptoms of dementia (BPSD) in Kampo medicine yokukansan. GM is mainly metabolized into hydroxylated forms (HM-1/2). However, the brain distributions of GM and HM has not been reported in vivo. In this study, therefore, the plasma concentrations and brain distribution of these compounds were examined in vivo using rats injected intravenously with GM. Plasma concentrations were analyzed using liquid chromatography-tandem mass spectrometry analysis and brain distribution using mass spectrometry imaging analysis. Plasma GM and HM-1 concentrations decreased in the 4 h after injection, whereas the concentration of plasma HM-2 increased at 4 h. In the 0.25 h-brain, GM signals were diffusely observed throughout the brain, including the cerebral cortex, hippocampus, striatum, thalamus, amygdala, cerebellum, and cerebral ventricle. HM signals were detected only in the ventricles of the brain at 4 h. These results suggest that plasma GM enters the brain and distributes in the parenchyma of various brain regions involved in BPSD, while plasma HM does not enter the brain parenchyma. This study is also the first to visually demonstrate the brain distribution of GM and its metabolite in vivo.

  • LC-MS/MS detection of citrus unshiu peel-derived flavonoids in the plasma and brain after oral administration of yokukansankachimpihange in rats
    2019
    Co-Authors: Mikina Takiyama, Takashi Matsumoto, Junko Watanabe
    Abstract:

    1. Yokukansankachimpihange (YKSCH), a Kampo formulation combining Citrus unshiu peel (CUP) and Pinellia tuber (PT) with yokukansan (YKS), has been recently used to treat the behavioral and psychological symptoms of dementia. Several flavonoids derived from CUP and PT reportedly exhibit psychopharmacological activity, but it remains unclear whether these flavonoids reach the brain after oral administration of YKSCH. 2. In this study, we first measured eight target flavonoids in the plasma and brain in rats orally administered YKSCH. Among these flavonoids, hesperidin, narirutin, nobiletin, and heptamethoxyflavone (HMF) were detected in the plasma, and nobiletin and HMF were detected in the brain. 3. Next, to clarify whether CUP and PT affect the pharmacokinetics of YKS ingredients in YKSCH, the plasma pharmacokinetics of Geissoschizine methyl ether (GM) as a representative active ingredient in YKS was examined in rats orally administered YKSCH or YKS. There was no significant difference between the two groups, inferring that the pharmacokinetics of GM may not be affected by the two additional crude drugs. 4. Taken together, this study suggests that the CUP-derived flavonoids nobiletin and HMF may be responsible for the psychopharmacological effects of YKSCH in addition to YKS ingredients.

  • basic study of drug drug interaction between memantine and the traditional japanese kampo medicine yokukansan
    Molecules, 2018
    Co-Authors: Takashi Matsumoto, Zenji Kawakami, Kazushige Mizoguchi, Kyoji Sekiguchi, Yasushi Ikarashi, Junko Watanabe, Masahiro Yamamoto
    Abstract:

    Several basic pharmacokinetic and pharmacological studies were conducted as part of a group of studies to clarify the drug-drug interaction (DDI) between memantine (MEM), a drug used to treat Alzheimer’s disease, and yokukansan (YKS), a traditional Japanese Kampo medicine used to treat behavioral and psychological symptoms of dementia. The pharmacokinetic studies showed that there were no statistically significant differences in MEM concentrations in the plasma, brain, and urine between mice treated with MEM alone and with MEM plus YKS. Regarding candidate active ingredients of YKS, there were also no statistically significant differences in concentrations of Geissoschizine methyl ether in the plasma and brain, urine, glycyrrhetinic acid in the plasma, and isoliquiritigenin in the urine, in mice treated with YKS alone or with MEM plus YKS. The pharmacological studies showed that isoliquiritigenin, which has an N-methyl-d-aspartic acid (NMDA) receptor antagonistic effect, did not affect the inhibitory effect of MEM on NMDA-induced intracellular Ca2+ influx in primary cultured rat cortical neurons. Moreover, YKS did not affect either the ameliorative effects of MEM on NMDA-induced learning and memory impairment, or the MEM-induced decrease in locomotor activities in mice. These results suggest that there is probably no pharmacokinetic or pharmacological interaction between MEM and YKS in mice, but more detailed studies are needed in the future. Our findings provide important information for future studies, to clarify the DDI more regarding the efficacy and safety of combined use of these drugs in a clinical situation.

  • in vitro identification of human cytochrome p450 isoforms involved in the metabolism of Geissoschizine methyl ether an active component of the traditional japanese medicine yokukansan
    Xenobiotica, 2016
    Co-Authors: Takashi Matsumoto, Hirotaka Kushida, Hiroaki Nishimura, Junko Watanabe, Takeshi Maruyama, Kazuya Maemura, Yoshio Kase
    Abstract:

    1. Yokukansan (YKS) is a traditional Japanese medicine also called kampo, which has been used to treat neurosis, insomnia, and night crying and peevishness in children. Geissoschizine methyl ether (GM), a major indole alkaloid found in Uncaria hook, has been identified as a major active component of YKS with psychotropic effects. Recently, GM was reported to have a partial agonistic effect on serotonin 5-HT1A receptors. However, there is little published information on GM metabolism in humans, although several studies reported the blood kinetics of GM in rats and humans. In this study, we investigated the GM metabolic pathways and metabolizing enzymes in humans. 2. Using recombinant human cytochrome P450 (CYP) isoforms and polyclonal antibodies to CYP isoforms, we found that GM was metabolized into hydroxylated, dehydrogenated, hydroxylated+dehydrogenated, demethylated and water adduct forms by some CYP isoforms. 3. The relative activity factors in human liver microsomes were calculated to determine the relative contributions of individual CYP isoforms to GM metabolism in human liver microsomes (HLMs). We identified CYP3A4 as the CYP isoform primarily responsible for GM metabolism in human liver microsomes. 4. These findings provide an important basis for understanding the pharmacokinetics and pharmacodynamics of GM and YKS.

Kazushige Mizoguchi - One of the best experts on this subject based on the ideXlab platform.

  • basic study of drug drug interaction between memantine and the traditional japanese kampo medicine yokukansan
    Molecules, 2018
    Co-Authors: Takashi Matsumoto, Zenji Kawakami, Kazushige Mizoguchi, Kyoji Sekiguchi, Yasushi Ikarashi, Junko Watanabe, Masahiro Yamamoto
    Abstract:

    Several basic pharmacokinetic and pharmacological studies were conducted as part of a group of studies to clarify the drug-drug interaction (DDI) between memantine (MEM), a drug used to treat Alzheimer’s disease, and yokukansan (YKS), a traditional Japanese Kampo medicine used to treat behavioral and psychological symptoms of dementia. The pharmacokinetic studies showed that there were no statistically significant differences in MEM concentrations in the plasma, brain, and urine between mice treated with MEM alone and with MEM plus YKS. Regarding candidate active ingredients of YKS, there were also no statistically significant differences in concentrations of Geissoschizine methyl ether in the plasma and brain, urine, glycyrrhetinic acid in the plasma, and isoliquiritigenin in the urine, in mice treated with YKS alone or with MEM plus YKS. The pharmacological studies showed that isoliquiritigenin, which has an N-methyl-d-aspartic acid (NMDA) receptor antagonistic effect, did not affect the inhibitory effect of MEM on NMDA-induced intracellular Ca2+ influx in primary cultured rat cortical neurons. Moreover, YKS did not affect either the ameliorative effects of MEM on NMDA-induced learning and memory impairment, or the MEM-induced decrease in locomotor activities in mice. These results suggest that there is probably no pharmacokinetic or pharmacological interaction between MEM and YKS in mice, but more detailed studies are needed in the future. Our findings provide important information for future studies, to clarify the DDI more regarding the efficacy and safety of combined use of these drugs in a clinical situation.

  • serotonin receptor binding characteristics of Geissoschizine methyl ether an indole alkaloid in uncaria hook
    Current Medicinal Chemistry, 2017
    Co-Authors: Yasushi Ikarashi, Kyoji Sekiguchi, Kazushige Mizoguchi
    Abstract:

    Background Geissoschizine methyl ether (GM) is one of the indole alkaloids in Uncaria hook, and an active ingredient of yokukansan (YKS) that improves behavioral and psychological symptoms of dementia (BPSD) in patients with several types of dementia. The pharmacological action of GM has been related to various serotonin (5-HT) receptor subtypes. Objective The aim of this article is to review the binding characteristics of GM to the 5-HT receptor subtypes in the brains using our own data and previous findings. Method Competitive receptor-binding and agonist/antagonist activity assays for several 5-HT receptor subtypes were performed. Moreover, the articles describing pharmacokinetics and brain distribution of GM were searched in PubMed. Results GM bound the following 5-HT receptor subtypes: 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5- HT4, 5-HT5A, 5-HT6, and 5-HT7. Among these receptors, GM had partial agonistic activity for 5-HT1A receptors and antagonistic activity for 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7 receptors. Also, GM was metabolized by various CYP isoforms, mainly CYP3A4. Parent/unchanged GM was detected in both the blood and brain of rats after oral administration of YKS. In the brains, GM was presumed to bind to 5- HT1A, 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7 receptors on neuron-like large cells mainly in the frontal cortex. Conclusion These results suggest that GM is a pharmacologically important alkaloid that regulates various serotonergic activities or functions by binding to multiple 5-HT receptor subtypes. Thus, this review provides recent 5-HT receptor-related evidence that GM is partly responsible for pharmacological effects of YKS.

  • by Augmenting Gene Expression of
    2016
    Co-Authors: Hitomi Kanno, Zenji Kawakami, Kazushige Mizoguchi, Yasushi Ikarashi, Yoshio Kase
    Abstract:

    Effects of the kampo medicine yokukansan on gene expression of the cystine/ glutamate antiporter system Xc2, which protects against glutamate-induced cytotoxicity, were examined in Pheochromocytoma cells (PC12 cells). Yokukansan inhibited glutamate-induced PC12 cell death. Similar cytoprotective effects were found in Uncaria hook. Experiments to clarify the active compounds revealed that Geissoschizine methyl ether, hirsuteine, hirsutine, and procyanidin B1 in Uncaria hook, had cytoprotective effects. These components enhanced gene expressions of system Xc2 subunits xCT and 4F2hc, and also ameliorated the glutamate-induced decrease in glutathione levels. These results suggest that the cytoprotective effect of yokukansan may be attributed to Geissoschizine methyl ether, hirsuteine, hirsutine, and procyanidin B1 in Uncaria hook

  • yokukansan a traditional japanese medicine enhances the l dopa induced rotational response in 6 hydroxydopamine lesioned rats possible inhibition of comt
    Biological & Pharmaceutical Bulletin, 2016
    Co-Authors: Yasushi Ishida, Kazushige Mizoguchi, Kyoji Sekiguchi, Yoshio Kase, Sachiko Imamura, Masahiro Tabuchi, Kosuke Ebihara, Go Koganemaru, Hiroshi Abe
    Abstract:

    The aim of the present study was to investigate the effects of the traditional Japanese medicine yokukansan (YKS) on the function of dopamine (DA) in the rat nigrostriatal system. Unilateral 6-hydroxydopamine lesions were produced in the rat nigrostriatal system. Despite a marked loss in the striatal immunoreactivity of tyrosine hydroxylase on the lesion side, striatal serotonin (5-HT) immunoreactivity was not affected. Treatment using L-3,4-dihydroxyphenylalanine (L-DOPA) in conjunction with benserazide for 15 d induced abnormal involuntary movements (AIMs) such as locomotive (rotational response), axial, forelimb, and orolingual movements in the lesioned rats. The L-DOPA-induced locomotive and axial, but not forelimb and orolingual, AIMs were significantly increased and prolonged by the pre-administration of YKS. We next investigated the effects of YKS on the production of DA from L-DOPA in 5-HT synthetic RIN 14B cells. RIN 14B cells produced DA and its metabolite, 3-methoxytyramine (3-MT), following L-DOPA treatment. YKS significantly augmented DA production and inhibited its metabolism to 3-MT in a manner similar to the catechol-O-methyltransferase (COMT) inhibitor entacapone. YKS and some alkaloids (corynoxeine: CX, Geissoschizine methyl ether: GM) in Uncaria hook, a constituent herb of YKS, also inhibited COMT activity, indicating that the augmenting effect of YKS on L-DOPA-induced DA production in 5-HT synthetic cells was due to the inhibition of COMT by CX and GM. Our results suggest that YKS facilitates the DA supplemental effect of L-DOPA, and that COMT inhibition by CX and GM contributes, at least in part, to the effects of YKS.

  • yokukansan a kampo medicine protects pc12 cells from glutamate induced death by augmenting gene expression of cystine glutamate antiporter system xc
    PLOS ONE, 2014
    Co-Authors: Hitomi Kanno, Zenji Kawakami, Kazushige Mizoguchi, Yasushi Ikarashi, Yoshio Kase
    Abstract:

    Effects of the kampo medicine yokukansan on gene expression of the cystine/glutamate antiporter system Xc−, which protects against glutamate-induced cytotoxicity, were examined in Pheochromocytoma cells (PC12 cells). Yokukansan inhibited glutamate-induced PC12 cell death. Similar cytoprotective effects were found in Uncaria hook. Experiments to clarify the active compounds revealed that Geissoschizine methyl ether, hirsuteine, hirsutine, and procyanidin B1 in Uncaria hook, had cytoprotective effects. These components enhanced gene expressions of system Xc− subunits xCT and 4F2hc, and also ameliorated the glutamate-induced decrease in glutathione levels. These results suggest that the cytoprotective effect of yokukansan may be attributed to Geissoschizine methyl ether, hirsuteine, hirsutine, and procyanidin B1 in Uncaria hook.

Hirotaka Kushida - One of the best experts on this subject based on the ideXlab platform.

  • gender differences in plasma pharmacokinetics and hepatic metabolism of Geissoschizine methyl ether from uncaria hook in rats
    Journal of Ethnopharmacology, 2021
    Co-Authors: Hirotaka Kushida, Yasushi Ikarashi, Takashi Matsumoto, Hiroaki Nishimura, Masahiro Yamamoto
    Abstract:

    Abstract Ethnopharmacological relevance Geissoschizine methyl ether (GM), an indole alkaloid from Uncaria hook, is an active ingredient in the traditional Japanese Kampo medicine yokukansan, which is used to treat neurosis, insomnia, irritability, and night crying in children. Aim of the study Recent our pharmacokinetic studies suggested that there may be gender differences in the plasma concentrations of GM in rats, but not in humans. However, the details of this difference remain unverified. The purpose of this study was to clarify the reasons for the gender differences in rats. Materials and methods GM plasma pharmacokinetics was compared in male and female rats orally administered yokukansan (4 g/kg). To confirm the involvement of cytochrome P450 (CYP) in GM liver metabolism, GM was incubated with male and female rat liver S9 fraction in the absence or presence of 1-aminobenzotriazole (a nonspecific CYP inhibitor). CYP isoforms involved in GM metabolism were estimated using recombinant rat CYP isoforms and anti-rat CYP antibodies. Results The maximum GM plasma concentrations were significantly higher in female than in male rats. When GM was incubated with rat liver S9 fractions, GM reduction was more striking in male S9 (69.3%) than that in female S9 (10.0%) and was completely blocked with nonspecific CYP inhibitor 1-aminobenzotriazole. Screening experiments using recombinant rat cytochrome P450 (CYP) isoforms showed that CYP1A1, CYP2C6, CYP2C11, CYP2D1, and CYP3A2 were involved in GM metabolism. Of these CYP isoforms, the use of anti-rat CYP antibodies indicated that male-dependent CYP2C11 and CYP3A2 were predominantly involved in the liver microsomal GM metabolism with gender differences. Conclusions These results suggest that the cause of gender differences in plasma GM pharmacokinetics in rats is most likely because of male-dependent CYP2C11 and CYP3A2, and provide also useful information to further evaluate the pharmacological and toxicological effects in future. This study is the first to demonstrate that the gender differences in plasma GM pharmacokinetics in rats are caused by the gender-dependent metabolism of GM.

  • in vitro identification of human cytochrome p450 isoforms involved in the metabolism of Geissoschizine methyl ether an active component of the traditional japanese medicine yokukansan
    Xenobiotica, 2016
    Co-Authors: Takashi Matsumoto, Hirotaka Kushida, Hiroaki Nishimura, Junko Watanabe, Takeshi Maruyama, Kazuya Maemura, Yoshio Kase
    Abstract:

    1. Yokukansan (YKS) is a traditional Japanese medicine also called kampo, which has been used to treat neurosis, insomnia, and night crying and peevishness in children. Geissoschizine methyl ether (GM), a major indole alkaloid found in Uncaria hook, has been identified as a major active component of YKS with psychotropic effects. Recently, GM was reported to have a partial agonistic effect on serotonin 5-HT1A receptors. However, there is little published information on GM metabolism in humans, although several studies reported the blood kinetics of GM in rats and humans. In this study, we investigated the GM metabolic pathways and metabolizing enzymes in humans. 2. Using recombinant human cytochrome P450 (CYP) isoforms and polyclonal antibodies to CYP isoforms, we found that GM was metabolized into hydroxylated, dehydrogenated, hydroxylated+dehydrogenated, demethylated and water adduct forms by some CYP isoforms. 3. The relative activity factors in human liver microsomes were calculated to determine the relative contributions of individual CYP isoforms to GM metabolism in human liver microsomes (HLMs). We identified CYP3A4 as the CYP isoform primarily responsible for GM metabolism in human liver microsomes. 4. These findings provide an important basis for understanding the pharmacokinetics and pharmacodynamics of GM and YKS.

  • Metabolic Profiling of the Uncaria Hook Alkaloid Geissoschizine Methyl Ether in Rat and Human Liver Microsomes Using High-Performance Liquid Chromatography with Tandem Mass Spectrometry
    MDPI AG, 2015
    Co-Authors: Hirotaka Kushida, Takashi Matsumoto, Hiroaki Nishimura, Yasushi Igarashi, Junko Watanabe, Kazuya Maemura, Yoshio Kase
    Abstract:

    Geissoschizine methyl ether (GM) is an indole alkaloid found in Uncaria hook, which is a galenical constituent of yokukansan, a traditional Japanese medicine. GM has been identified as the active component responsible for anti-aggressive effects. In this study, the metabolic profiling of GM in rat and human liver microsomes was investigated. Thirteen metabolites of GM were elucidated and identified using a high-performance liquid chromatography with tandem mass spectrometry method, and their molecular structures were proposed on the basis of the characteristics of their precursor ions, product ions, and chromatographic retention times. There were no differences in the metabolites between the rat and human liver microsomes. Among the 13 identified metabolites, there were two demethylation metabolites, one dehydrogenation metabolite, three methylation metabolites, three oxidation metabolites, two water-adduct metabolites, one di-demethylation metabolite, and one water-adduct metabolite followed by oxidation. The metabolic pathways of GM were proposed on the basis of this study. This study will be helpful in understanding the metabolic routes of GM and related Uncaria hook alkaloids, and provide useful information on the pharmacokinetics and pharmacodynamics. This is the first report that describes the separation and identification of GM metabolites in rat and human liver microsomes

  • specific binding and characteristics of Geissoschizine methyl ether an indole alkaloid of uncaria hook in the rat brain
    Journal of Ethnopharmacology, 2014
    Co-Authors: Kazushige Mizoguchi, Yasushi Ikarashi, Hitomi Kanno, Hirotaka Kushida, Hiroaki Nishimura, Yasushi Igarashi, Yoshio Kase
    Abstract:

    Abstract Ethnopharmacological relevance Geissoschizine methyl ether (GM) is an indole alkaloid that is a component of Uncaria Hook, and has been identified as the active component responsible for the anti-aggressive effects of the Uncaria Hook-containing traditional Japanese medicine, yokukansan. Recently, GM was shown to reach the brain by crossing the blood–brain barrier in rats following the oral administration of yokukansan. This finding suggested that there may be specific binding sites for GM in the brain. Here we show evidence that tritium-labeled GM ([3H]GM) binds specifically to several brain areas of rats. Materials and methods Male rats were used. [3H]GM was synthesized from a demethylated derivative of GM. Specific binding sites of [3H]GM on brain sections were determined by quantitative autoradiography, and maximum binding densities (Bmax) and dissociation constants (Kd) were calculated. Several chemical compounds were used to clarify the molecules that recognize [3H]GM in the completion-binding assay. Emulsion microautoradiography was also performed to identify the cells that bind [3H]GM. Results Specific binding of [3H]GM was observed in the frontal cortex, including the prefrontal cortical region (e.g., prelimbic cortex (PrL)), hippocampus, caudate putamen, amygdala, central medial thalamic nucleus, dorsal raphe nucleus (DR), and cerebellum. Bmax ranged between 0.65 and 8.79 pmol/mg tissue, and Kd was between 35.0 and 232.6 nM. Specific binding with relatively high affinity (Kd less than 62 nM) was dense in the frontal cortical region, moderate in the DR, and sparse in the cerebellum. The specific binding of [3H]GM in the PrL was significantly replaced by the serotonin 1A (5-HT1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (DPAT), 5-HT2A receptor antagonist ketanserin, 5-HT2B receptor agonist BW 723C86, 5-HT2C receptor agonist RO60-0175, adrenergic α2A receptor antagonist yohimbine, L-type Ca2+ channel blocker verapamil, and μ-opioid receptor antagonist naloxone. Similar results were obtained in the frontal cortex and DR, but not in the cerebellum. Microautoradiography revealed that [3H]GM signals were distributed throughout the frontal cortex, which included neuron-like large cells. Conclusion These results demonstrate that specific binding sites for GM exist in rat brain tissue, and suggest that the pharmacological actions of GM are mainly associated with 5-HT receptors in the frontal cortex and DR. These results provide an insight into the neuropharmacology of GM and GM-containing herbal medicines.

  • simultaneous quantitative analyses of indole and oxindole alkaloids of uncaria hook in rat plasma and brain after oral administration of the traditional japanese medicine yokukansan using high performance liquid chromatography with tandem mass spectr
    Biomedical Chromatography, 2013
    Co-Authors: Hirotaka Kushida, Yasushi Ikarashi, Masahiro Tabuchi, Miwako Fukutake, Takao Katsuhara, Hiroaki Nishimura, Masanao Kanitani, Yoshio Kase
    Abstract:

    Uncaria Hook (UH) alkaloids are involved in the beneficial effects of Yokukansan. However, the pharmacokinetics of UH alkaloids after oral administration of Yokukansan has not yet been sufficiently investigated. Therefore, we developed and validated a sensitive and specific high-performance liquid chromatography with tandem mass spectrometry (LC/MS/MS) method for the simultaneous quantitation of seven UH alkaloids (corynoxeine, isocorynoxeine, rhynchophylline, isorhynchophylline, hirsutine, hirsuteine and Geissoschizine methyl ether) in rat plasma and brain. After protein precipitation with acetonitrile, chromatographic separation was performed using an Ascentis Express RP-amide column, with gradient elution with 0.2% formic acid and acetonitrile at 0.3 mL/min. All analytes in the plasma and brain showed good linearity over a wide concentration range (r > 0.995). Intra-day and inter-day variations of each constituent were 8.6 and 8.0% or less in the plasma, and 14.9 and 15.0% or less in the brain, respectively. The validated LC/MS/MS method was applied in the pharmacokinetic studies of UH alkaloids after oral administration of Yokukansan to rats. In the plasma, rhynchophylline, hirsutine, hirsuteine and Geissoschizine methyl ether were detected, but only Geissoschizine methyl ether was detected in the brain. These results suggest that Geissoschizine methyl ether is an important constituent of the pharmacological effects of Yokukansan.