Gnat

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 327 Experts worldwide ranked by ideXlab platform

Dan Larhammar - One of the best experts on this subject based on the ideXlab platform.

  • The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications
    BMC Evolutionary Biology, 2013
    Co-Authors: David Lagman, Daniel Ocampo Daza, Jenny Widmark, Xesús M Abalo, Görel Sundström, Dan Larhammar
    Abstract:

    Background Vertebrate color vision is dependent on four major color opsin subtypes: RH2 (green opsin), SWS1 (ultraviolet opsin), SWS2 (blue opsin), and LWS (red opsin). Together with the dim-light receptor rhodopsin (RH1), these form the family of vertebrate visual opsins. Vertebrate genomes contain many multi-membered gene families that can largely be explained by the two rounds of whole genome duplication (WGD) in the vertebrate ancestor (2R) followed by a third round in the teleost ancestor (3R). Related chromosome regions resulting from WGD or block duplications are said to form a paralogon. We describe here a paralogon containing the genes for visual opsins, the G-protein alpha subunit families for transducin (Gnat) and adenylyl cyclase inhibition (GNAI), the oxytocin and vasopressin receptors (OT/VP-R), and the L-type voltage-gated calcium channels (CACNA1-L). Results Sequence-based phylogenies and analyses of conserved synteny show that the above-mentioned gene families, and many neighboring gene families, expanded in the early vertebrate WGDs. This allows us to deduce the following evolutionary scenario: The vertebrate ancestor had a chromosome containing the genes for two visual opsins, one Gnat, one GNAI, two OT/VP-Rs and one CACNA1-L gene. This chromosome was quadrupled in 2R. Subsequent gene losses resulted in a set of five visual opsin genes, three Gnat and GNAI genes, six OT/VP-R genes and four CACNA1-L genes. These regions were duplicated again in 3R resulting in additional teleost genes for some of the families. Major chromosomal rearrangements have taken place in the teleost genomes. By comparison with the corresponding chromosomal regions in the spotted gar, which diverged prior to 3R, we could time these rearrangements to post-3R. Conclusions We present an extensive analysis of the paralogon housing the visual opsin, Gnat and GNAI, OT/VP-R, and CACNA1-L gene families. The combined data imply that the early vertebrate WGD events contributed to the evolution of vision and the other neuronal and neuroendocrine functions exerted by the proteins encoded by these gene families. In pouched lamprey all five visual opsin genes have previously been identified, suggesting that lampreys diverged from the jawed vertebrates after 2R.

  • the vertebrate ancestral repertoire of visual opsins transducin alpha subunits and oxytocin vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications
    BMC Evolutionary Biology, 2013
    Co-Authors: David Lagman, Jenny Widmark, Xesús M Abalo, Görel Sundström, Daniel Ocampo Daza, Dan Larhammar
    Abstract:

    Background Vertebrate color vision is dependent on four major color opsin subtypes: RH2 (green opsin), SWS1 (ultraviolet opsin), SWS2 (blue opsin), and LWS (red opsin). Together with the dim-light receptor rhodopsin (RH1), these form the family of vertebrate visual opsins. Vertebrate genomes contain many multi-membered gene families that can largely be explained by the two rounds of whole genome duplication (WGD) in the vertebrate ancestor (2R) followed by a third round in the teleost ancestor (3R). Related chromosome regions resulting from WGD or block duplications are said to form a paralogon. We describe here a paralogon containing the genes for visual opsins, the G-protein alpha subunit families for transducin (Gnat) and adenylyl cyclase inhibition (GNAI), the oxytocin and vasopressin receptors (OT/VP-R), and the L-type voltage-gated calcium channels (CACNA1-L).

Igor Kuzmin - One of the best experts on this subject based on the ideXlab platform.

  • construction of a 600 kilobase cosmid clone contig and generation of a transcriptional map surrounding the lung cancer tumor suppressor gene tsg locus on human chromosome 3p21 3 progress toward the isolation of a lung cancer tsg
    Cancer Research, 1996
    Co-Authors: F. Latif, Jeou Yuan Chen, L Geil, Igor Kuzmin, Scott Bader, Yoshitaka Sekido, Vladimir I. Kashuba, Eugene R. Zabarovsky, George Klein, Berton Zbar
    Abstract:

    Abstract The critical region on human chromosome 3p21.3 harboring a putative lung cancer tumor suppressor gene (TSG) was previously defined by allelotyping and recently refined by overlapping homozygous deletions. We report the construction of a 700-kb (cosmid and one P1 phage) clone contig covering the deletion overlap and its flanks. The minimal set of 23 cosmids comprises 600 kb and is extended by one P1 phage to 700 kb to cover the distal breakpoint of the overlap. The clone contig was extensively characterized by restriction and expression mapping to produce high resolution physical and transcription maps of the cloned region. Potential transcribed fragments were detected by hybridization with PCR-amplified cDNA libraries, direct cDNA selection, “zoo” blotting, cDNA screening, and identification of 24 CpG islands. Thus far, 15 new genes represented by partial or full-length cDNAs were isolated, characterized, and precisely positioned on the contig. Two previously cloned genes, namely GNAI-2 and Gnat-1, were also positioned. In addition, the telomeric breakpoint of the NCI H740 deletion and the centromeric breakpoint of the overlapping GLC20 deletion were discovered and mapped to define precisely the candidate TSG region. This large cosmid clone contig and high resolution maps will prove crucial in the identification of the lung cancer TSG(s).

  • construction of a 600 kilobase cosmid clone contig and generation of a transcriptional map surrounding the lung cancer tumor suppressor gene tsg locus on human chromosome 3p21 3 progress toward the isolation of a lung cancer tsg
    Cancer Research, 1996
    Co-Authors: Ming Hui Wei, Jeou Yuan Chen, L Geil, Scott Bader, Yoshitaka Sekido, Vladimir I. Kashuba, F. Latif, Fuh Mei Duh, Cheng Chi Lee, Igor Kuzmin
    Abstract:

    The critical region on human chromosome 3p21.3 harboring a putative lung cancer tumor suppressor gene (TSG) was previously defined by allelotyping and recently refined by overlapping homozygous deletions. We report the construction of a 700-kb (cosmid and one P1 phage) clone contig covering the deletion overlap and its flanks. The minimal set of 23 cosmids comprises 600 kb and is extended by one P1 phage to 700 kb to cover the distal breakpoint of the overlap. The clone contig was extensively characterized by restriction and expression mapping to produce high resolution physical and transcription maps of the cloned region. Potential transcribed fragments were detected by hybridization with PCR-amplified cDNA libraries, direct cDNA selection "zoo" blotting, cDNA screening, and identification of 24 CpG islands. Thus far, 15 new genes represented by partial or full-length cDNAs were isolated, characterized, and precisely positioned on the contig. Two previously cloned genes, namely GNAI-2 and Gnat-1, were also positioned. In addition, the telomeric breakpoint of the NCI H740 deletion and centromeric breakpoint of the overlapping GLC20 deletion were discovered and mapped to define precisely the candidate TSG region. This large cosmid clone contig and high resolution maps will prove crucial in the identification of the lung cancer TSG(s).

David Lagman - One of the best experts on this subject based on the ideXlab platform.

  • The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications
    BMC Evolutionary Biology, 2013
    Co-Authors: David Lagman, Daniel Ocampo Daza, Jenny Widmark, Xesús M Abalo, Görel Sundström, Dan Larhammar
    Abstract:

    Background Vertebrate color vision is dependent on four major color opsin subtypes: RH2 (green opsin), SWS1 (ultraviolet opsin), SWS2 (blue opsin), and LWS (red opsin). Together with the dim-light receptor rhodopsin (RH1), these form the family of vertebrate visual opsins. Vertebrate genomes contain many multi-membered gene families that can largely be explained by the two rounds of whole genome duplication (WGD) in the vertebrate ancestor (2R) followed by a third round in the teleost ancestor (3R). Related chromosome regions resulting from WGD or block duplications are said to form a paralogon. We describe here a paralogon containing the genes for visual opsins, the G-protein alpha subunit families for transducin (Gnat) and adenylyl cyclase inhibition (GNAI), the oxytocin and vasopressin receptors (OT/VP-R), and the L-type voltage-gated calcium channels (CACNA1-L). Results Sequence-based phylogenies and analyses of conserved synteny show that the above-mentioned gene families, and many neighboring gene families, expanded in the early vertebrate WGDs. This allows us to deduce the following evolutionary scenario: The vertebrate ancestor had a chromosome containing the genes for two visual opsins, one Gnat, one GNAI, two OT/VP-Rs and one CACNA1-L gene. This chromosome was quadrupled in 2R. Subsequent gene losses resulted in a set of five visual opsin genes, three Gnat and GNAI genes, six OT/VP-R genes and four CACNA1-L genes. These regions were duplicated again in 3R resulting in additional teleost genes for some of the families. Major chromosomal rearrangements have taken place in the teleost genomes. By comparison with the corresponding chromosomal regions in the spotted gar, which diverged prior to 3R, we could time these rearrangements to post-3R. Conclusions We present an extensive analysis of the paralogon housing the visual opsin, Gnat and GNAI, OT/VP-R, and CACNA1-L gene families. The combined data imply that the early vertebrate WGD events contributed to the evolution of vision and the other neuronal and neuroendocrine functions exerted by the proteins encoded by these gene families. In pouched lamprey all five visual opsin genes have previously been identified, suggesting that lampreys diverged from the jawed vertebrates after 2R.

  • the vertebrate ancestral repertoire of visual opsins transducin alpha subunits and oxytocin vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications
    BMC Evolutionary Biology, 2013
    Co-Authors: David Lagman, Jenny Widmark, Xesús M Abalo, Görel Sundström, Daniel Ocampo Daza, Dan Larhammar
    Abstract:

    Background Vertebrate color vision is dependent on four major color opsin subtypes: RH2 (green opsin), SWS1 (ultraviolet opsin), SWS2 (blue opsin), and LWS (red opsin). Together with the dim-light receptor rhodopsin (RH1), these form the family of vertebrate visual opsins. Vertebrate genomes contain many multi-membered gene families that can largely be explained by the two rounds of whole genome duplication (WGD) in the vertebrate ancestor (2R) followed by a third round in the teleost ancestor (3R). Related chromosome regions resulting from WGD or block duplications are said to form a paralogon. We describe here a paralogon containing the genes for visual opsins, the G-protein alpha subunit families for transducin (Gnat) and adenylyl cyclase inhibition (GNAI), the oxytocin and vasopressin receptors (OT/VP-R), and the L-type voltage-gated calcium channels (CACNA1-L).

F. Latif - One of the best experts on this subject based on the ideXlab platform.

  • construction of a 600 kilobase cosmid clone contig and generation of a transcriptional map surrounding the lung cancer tumor suppressor gene tsg locus on human chromosome 3p21 3 progress toward the isolation of a lung cancer tsg
    Cancer Research, 1996
    Co-Authors: F. Latif, Jeou Yuan Chen, L Geil, Igor Kuzmin, Scott Bader, Yoshitaka Sekido, Vladimir I. Kashuba, Eugene R. Zabarovsky, George Klein, Berton Zbar
    Abstract:

    Abstract The critical region on human chromosome 3p21.3 harboring a putative lung cancer tumor suppressor gene (TSG) was previously defined by allelotyping and recently refined by overlapping homozygous deletions. We report the construction of a 700-kb (cosmid and one P1 phage) clone contig covering the deletion overlap and its flanks. The minimal set of 23 cosmids comprises 600 kb and is extended by one P1 phage to 700 kb to cover the distal breakpoint of the overlap. The clone contig was extensively characterized by restriction and expression mapping to produce high resolution physical and transcription maps of the cloned region. Potential transcribed fragments were detected by hybridization with PCR-amplified cDNA libraries, direct cDNA selection, “zoo” blotting, cDNA screening, and identification of 24 CpG islands. Thus far, 15 new genes represented by partial or full-length cDNAs were isolated, characterized, and precisely positioned on the contig. Two previously cloned genes, namely GNAI-2 and Gnat-1, were also positioned. In addition, the telomeric breakpoint of the NCI H740 deletion and the centromeric breakpoint of the overlapping GLC20 deletion were discovered and mapped to define precisely the candidate TSG region. This large cosmid clone contig and high resolution maps will prove crucial in the identification of the lung cancer TSG(s).

  • construction of a 600 kilobase cosmid clone contig and generation of a transcriptional map surrounding the lung cancer tumor suppressor gene tsg locus on human chromosome 3p21 3 progress toward the isolation of a lung cancer tsg
    Cancer Research, 1996
    Co-Authors: Ming Hui Wei, Jeou Yuan Chen, L Geil, Scott Bader, Yoshitaka Sekido, Vladimir I. Kashuba, F. Latif, Fuh Mei Duh, Cheng Chi Lee, Igor Kuzmin
    Abstract:

    The critical region on human chromosome 3p21.3 harboring a putative lung cancer tumor suppressor gene (TSG) was previously defined by allelotyping and recently refined by overlapping homozygous deletions. We report the construction of a 700-kb (cosmid and one P1 phage) clone contig covering the deletion overlap and its flanks. The minimal set of 23 cosmids comprises 600 kb and is extended by one P1 phage to 700 kb to cover the distal breakpoint of the overlap. The clone contig was extensively characterized by restriction and expression mapping to produce high resolution physical and transcription maps of the cloned region. Potential transcribed fragments were detected by hybridization with PCR-amplified cDNA libraries, direct cDNA selection "zoo" blotting, cDNA screening, and identification of 24 CpG islands. Thus far, 15 new genes represented by partial or full-length cDNAs were isolated, characterized, and precisely positioned on the contig. Two previously cloned genes, namely GNAI-2 and Gnat-1, were also positioned. In addition, the telomeric breakpoint of the NCI H740 deletion and centromeric breakpoint of the overlapping GLC20 deletion were discovered and mapped to define precisely the candidate TSG region. This large cosmid clone contig and high resolution maps will prove crucial in the identification of the lung cancer TSG(s).

Berton Zbar - One of the best experts on this subject based on the ideXlab platform.

  • construction of a 600 kilobase cosmid clone contig and generation of a transcriptional map surrounding the lung cancer tumor suppressor gene tsg locus on human chromosome 3p21 3 progress toward the isolation of a lung cancer tsg
    Cancer Research, 1996
    Co-Authors: F. Latif, Jeou Yuan Chen, L Geil, Igor Kuzmin, Scott Bader, Yoshitaka Sekido, Vladimir I. Kashuba, Eugene R. Zabarovsky, George Klein, Berton Zbar
    Abstract:

    Abstract The critical region on human chromosome 3p21.3 harboring a putative lung cancer tumor suppressor gene (TSG) was previously defined by allelotyping and recently refined by overlapping homozygous deletions. We report the construction of a 700-kb (cosmid and one P1 phage) clone contig covering the deletion overlap and its flanks. The minimal set of 23 cosmids comprises 600 kb and is extended by one P1 phage to 700 kb to cover the distal breakpoint of the overlap. The clone contig was extensively characterized by restriction and expression mapping to produce high resolution physical and transcription maps of the cloned region. Potential transcribed fragments were detected by hybridization with PCR-amplified cDNA libraries, direct cDNA selection, “zoo” blotting, cDNA screening, and identification of 24 CpG islands. Thus far, 15 new genes represented by partial or full-length cDNAs were isolated, characterized, and precisely positioned on the contig. Two previously cloned genes, namely GNAI-2 and Gnat-1, were also positioned. In addition, the telomeric breakpoint of the NCI H740 deletion and the centromeric breakpoint of the overlapping GLC20 deletion were discovered and mapped to define precisely the candidate TSG region. This large cosmid clone contig and high resolution maps will prove crucial in the identification of the lung cancer TSG(s).