Goldwasser

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 12900 Experts worldwide ranked by ideXlab platform

Mike Malkin - One of the best experts on this subject based on the ideXlab platform.

  • IWDW - Secure quantization index modulation watermark detection
    Digital Watermarking, 2006
    Co-Authors: Ton Kalker, Mike Malkin
    Abstract:

    In this paper we introduce the problem of watermark security for systems in which an implementation of a watermark detector is available to an attacker. This paper serves as an introduction to a keynote talk at IWDW 2006. This talk will review two homomorphic encryption methods, viz. Paillier and Goldwasser & Micali, and their application to secure detection of Quantization Index Modulation (QIM) watermarks.

  • secure quantization index modulation watermark detection
    Lecture Notes in Computer Science, 2006
    Co-Authors: Ton Kalker, Mike Malkin
    Abstract:

    In this paper we introduce the problem of watermark security for systems in which an implementation of a watermark detector is available to an attacker. This paper serves as an introduction to a keynote talk at IWDW 2006. This talk will review two homomorphic encryption methods, viz. Paillier and Goldwasser & Micali, and their application to secure detection of Quantization Index Modulation (QIM) watermarks.

Marianne Gaborieau - One of the best experts on this subject based on the ideXlab platform.

  • viscosimetric detection in size exclusion chromatography sec gpc the Goldwasser method and beyond
    IEEE Journal of Solid-state Circuits, 2010
    Co-Authors: Patrice Castignolles, Marianne Gaborieau
    Abstract:

    Size-exclusion chromatography (SEC or GPC) is the most widely used separation method to characterize polymers. The high level of complexity of most polymeric materials necessitates the use of not only concentration-sensitive detection but also structure-sensitive detection. Viscometry is usually used in conjunction with a concentration-sensitive detector and universal calibration to determine molecular weights of polymers. Goldwasser proposed to use a viscometer as a single detector to determine number-average molecular weights, Mn (ACS Symposium Series, 521, 143). The method is particularly of interest when concentration-sensitive detection is not available, because the sample is isorefractive or not UV-absorbing, or because composition is not constant (copolymers). It has known very little applications so far. It actually does not only allow determining Mn, but also the number hydrodynamic volume distribution. This opens a wider range of applications for the Goldwasser method. Size-exclusion chromatography only yields inaccurate molecular weight distributions for some complex branched polymers. Hydrodynamic volume distributions have then a strong potential for comparative studies owing to their far higher accuracy. Our experimental tests highlight the fact that the method is highly sensitive to noise and careful optimization of the injection concentration is needed, but number distribution can be obtained as well as Mn.

  • Viscosimetric detection in size-exclusion chromatography (SEC/GPC) : the Goldwasser method and beyond
    Journal of Separation Science, 2010
    Co-Authors: Patrice Castignolles, Marianne Gaborieau
    Abstract:

    Size-exclusion chromatography (SEC or GPC) is the most widely used separation method to characterize polymers. The high level of complexity of most polymeric materials necessitates the use of not only concentration-sensitive detection but also structure-sensitive detection. Viscometry is usually used in conjunction with a concentration-sensitive detector and universal calibration to determine molecular weights of polymers. Goldwasser proposed to use a viscometer as a single detector to determine number-average molecular weights, Mn (ACS Symposium Series, 521, 143). The method is particularly of interest when concentration-sensitive detection is not available, because the sample is isorefractive or not UV-absorbing, or because composition is not constant (copolymers). It has known very little applications so far. It actually does not only allow determining Mn, but also the number hydrodynamic volume distribution. This opens a wider range of applications for the Goldwasser method. Size-exclusion chromatography only yields inaccurate molecular weight distributions for some complex branched polymers. Hydrodynamic volume distributions have then a strong potential for comparative studies owing to their far higher accuracy. Our experimental tests highlight the fact that the method is highly sensitive to noise and careful optimization of the injection concentration is needed, but number distribution can be obtained as well as Mn.

Amit Sahai - One of the best experts on this subject based on the ideXlab platform.

  • TCC - Statistical Concurrent Non-malleable Zero Knowledge
    Theory of Cryptography, 2014
    Co-Authors: Claudio Orlandi, Rafail Ostrovsky, Vanishree Rao, Amit Sahai, Ivan Visconti
    Abstract:

    The notion of Zero Knowledge introduced by Goldwasser, Micali and Rackoff in STOC 1985 is fundamental in Cryptography. Motivated by conceptual and practical reasons, this notion has been explored under stronger definitions. We will consider the following two main strengthened notions.

  • resolving the simultaneous resettability conjecture and a new non black box simulation strategy
    Foundations of Computer Science, 2009
    Co-Authors: Yi Deng, Vipul Goyal, Amit Sahai
    Abstract:

    Canetti, Goldreich, Goldwasser, and Micali (STOC 2000) introduced the notion of resettable zero-knowledge proofs, where the protocol must be zero-knowledge even if a cheating verifier can reset the prover and have several interactions in which the prover uses the same random tape. Soon afterwards, Barak, Goldreich, Goldwasser, and Lindell (FOCS 2001) studied the closely related notion of resettable soundness, where the soundness condition of the protocol must hold even if the cheating prover can reset the verifier to have multiple interactions with the same verifier's random tape. The main problem left open by this work was whether it is possible to have a single protocol that is simultaneously resettable zero knowledge and resettably sound. We resolve this question by constructing such a protocol. At the heart of our construction is a new non-black-box simulation strategy, which we believe to be of independent interest. This new strategy allows for simulators which "marry'' recursive rewinding techniques (common in the context of concurrent simulation) with non-black-box simulation. Previous non-black-box strategies led to exponential blowups in computational complexity in such circumstances, which our new strategy is able to avoid.

  • FOCS - Resolving the Simultaneous Resettability Conjecture and a New Non-Black-Box Simulation Strategy
    2009 50th Annual IEEE Symposium on Foundations of Computer Science, 2009
    Co-Authors: Yi Deng, Vipul Goyal, Amit Sahai
    Abstract:

    Canetti, Goldreich, Goldwasser, and Micali (STOC 2000) introduced the notion of resettable zero-knowledge proofs, where the protocol must be zero-knowledge even if a cheating verifier can reset the prover and have several interactions in which the prover uses the same random tape. Soon afterwards, Barak, Goldreich, Goldwasser, and Lindell (FOCS 2001) studied the closely related notion of resettable soundness, where the soundness condition of the protocol must hold even if the cheating prover can reset the verifier to have multiple interactions with the same verifier's random tape. The main problem left open by this work was whether it is possible to have a single protocol that is simultaneously resettable zero knowledge and resettably sound. We resolve this question by constructing such a protocol. At the heart of our construction is a new non-black-box simulation strategy, which we believe to be of independent interest. This new strategy allows for simulators which "marry'' recursive rewinding techniques (common in the context of concurrent simulation) with non-black-box simulation. Previous non-black-box strategies led to exponential blowups in computational complexity in such circumstances, which our new strategy is able to avoid.

Ton Kalker - One of the best experts on this subject based on the ideXlab platform.

  • IWDW - Secure quantization index modulation watermark detection
    Digital Watermarking, 2006
    Co-Authors: Ton Kalker, Mike Malkin
    Abstract:

    In this paper we introduce the problem of watermark security for systems in which an implementation of a watermark detector is available to an attacker. This paper serves as an introduction to a keynote talk at IWDW 2006. This talk will review two homomorphic encryption methods, viz. Paillier and Goldwasser & Micali, and their application to secure detection of Quantization Index Modulation (QIM) watermarks.

  • secure quantization index modulation watermark detection
    Lecture Notes in Computer Science, 2006
    Co-Authors: Ton Kalker, Mike Malkin
    Abstract:

    In this paper we introduce the problem of watermark security for systems in which an implementation of a watermark detector is available to an attacker. This paper serves as an introduction to a keynote talk at IWDW 2006. This talk will review two homomorphic encryption methods, viz. Paillier and Goldwasser & Micali, and their application to secure detection of Quantization Index Modulation (QIM) watermarks.

Patrice Castignolles - One of the best experts on this subject based on the ideXlab platform.

  • viscosimetric detection in size exclusion chromatography sec gpc the Goldwasser method and beyond
    IEEE Journal of Solid-state Circuits, 2010
    Co-Authors: Patrice Castignolles, Marianne Gaborieau
    Abstract:

    Size-exclusion chromatography (SEC or GPC) is the most widely used separation method to characterize polymers. The high level of complexity of most polymeric materials necessitates the use of not only concentration-sensitive detection but also structure-sensitive detection. Viscometry is usually used in conjunction with a concentration-sensitive detector and universal calibration to determine molecular weights of polymers. Goldwasser proposed to use a viscometer as a single detector to determine number-average molecular weights, Mn (ACS Symposium Series, 521, 143). The method is particularly of interest when concentration-sensitive detection is not available, because the sample is isorefractive or not UV-absorbing, or because composition is not constant (copolymers). It has known very little applications so far. It actually does not only allow determining Mn, but also the number hydrodynamic volume distribution. This opens a wider range of applications for the Goldwasser method. Size-exclusion chromatography only yields inaccurate molecular weight distributions for some complex branched polymers. Hydrodynamic volume distributions have then a strong potential for comparative studies owing to their far higher accuracy. Our experimental tests highlight the fact that the method is highly sensitive to noise and careful optimization of the injection concentration is needed, but number distribution can be obtained as well as Mn.

  • Viscosimetric detection in size-exclusion chromatography (SEC/GPC) : the Goldwasser method and beyond
    Journal of Separation Science, 2010
    Co-Authors: Patrice Castignolles, Marianne Gaborieau
    Abstract:

    Size-exclusion chromatography (SEC or GPC) is the most widely used separation method to characterize polymers. The high level of complexity of most polymeric materials necessitates the use of not only concentration-sensitive detection but also structure-sensitive detection. Viscometry is usually used in conjunction with a concentration-sensitive detector and universal calibration to determine molecular weights of polymers. Goldwasser proposed to use a viscometer as a single detector to determine number-average molecular weights, Mn (ACS Symposium Series, 521, 143). The method is particularly of interest when concentration-sensitive detection is not available, because the sample is isorefractive or not UV-absorbing, or because composition is not constant (copolymers). It has known very little applications so far. It actually does not only allow determining Mn, but also the number hydrodynamic volume distribution. This opens a wider range of applications for the Goldwasser method. Size-exclusion chromatography only yields inaccurate molecular weight distributions for some complex branched polymers. Hydrodynamic volume distributions have then a strong potential for comparative studies owing to their far higher accuracy. Our experimental tests highlight the fact that the method is highly sensitive to noise and careful optimization of the injection concentration is needed, but number distribution can be obtained as well as Mn.