Google Glass

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 2604 Experts worldwide ranked by ideXlab platform

Aydogan Ozcan - One of the best experts on this subject based on the ideXlab platform.

  • Google Glass based rapid analysis of immuno chromatographic diagnostic tests
    Frontiers in Optics, 2015
    Co-Authors: Steve Feng, Romain Caire, Bingen Cortazar, Mehmet Turan, Andrew L Wong, Aydogan Ozcan
    Abstract:

    For rapid, real-time disease diagnostics, we demonstrate the ability of the Google Glass to perform qualitative and quantitative analysis of lateral-flow immuno-chromatographic diagnostic tests.

  • quantification of plant chlorophyll content using Google Glass
    Lab on a Chip, 2015
    Co-Authors: Bingen Cortazar, Steve Feng, Hatice Ceylan Koydemir, Derek Tseng, Aydogan Ozcan
    Abstract:

    Measuring plant chlorophyll concentration is a well-known and commonly used method in agriculture and environmental applications for monitoring plant health, which also correlates with many other plant parameters including, e.g., carotenoids, nitrogen, maximum green fluorescence, etc. Direct chlorophyll measurement using chemical extraction is destructive, complex and time-consuming, which has led to the development of mobile optical readers, providing non-destructive but at the same time relatively expensive tools for evaluation of plant chlorophyll levels. Here we demonstrate accurate measurement of chlorophyll concentration in plant leaves using Google Glass and a custom-developed software application together with a cost-effective leaf holder and multi-spectral illuminator device. Two images, taken using Google Glass, of a leaf placed in our portable illuminator device under red and white (i.e., broadband) light-emitting-diode (LED) illumination are uploaded to our servers for remote digital processing and chlorophyll quantification, with results returned to the user in less than 10 seconds. Intensity measurements extracted from the uploaded images are mapped against gold-standard colorimetric measurements made through a commercially available reader to generate calibration curves for plant leaf chlorophyll concentration. Using five plant species to calibrate our system, we demonstrate that our approach can accurately and rapidly estimate chlorophyll concentration of fifteen different plant species under both indoor and outdoor lighting conditions. This Google Glass based chlorophyll measurement platform can display the results in spatiotemporal and tabular forms and would be highly useful for monitoring of plant health in environmental and agriculture related applications, including e.g., urban plant monitoring, indirect measurements of the effects of climate change, and as an early indicator for water, soil, and air quality degradation.

  • field quantification of plant chlorophyll content using Google Glass
    Proceedings of SPIE, 2015
    Co-Authors: Bingen Cortazar, Steve Feng, Hatice Ceylan Koydemir, Derek Tseng, Aydogan Ozcan
    Abstract:

    Quantification of plant health is crucial for agriculture and can even be used to monitor environmental factors and climate related changes. Plant health is known to be directly related to the chlorophyll content of leaves, which correlates with the capacity of the leaves to transmit or absorb light. The gold-standard method for measuring the chlorophyll concentration of a leaf is based on chemical extraction, which is complex, destructive and time-consuming. As an alternative, here we present a field-portable, cost-effective, and colorimetric method to quantify the chlorophyll content of leaves using Google Glass. For this purpose, we created a custom designed handheld device which is battery-powered and 3D-printed to separately provide uniform illumination of a selected region of interest on the leaf surface using red and white light-emitting-diodes (LEDs). The design of this device minimizes the interference of ambient light conditions to our chlorophyll measurements performed through the Glass camera. We tested this platform by using fifteen randomly selected plant species from UCLA Botanical Garden and imaging fully-grown leaves of these species using Glass. An image-processing algorithm was developed to process the acquired images and obtain the chlorophyll concentration information using the red channel intensities in our region-of-interest for both the white and red LED illumination conditions. The results obtained by this algorithm are in good agreement with the SPAD indices measured for each plant, demonstrating that Google Glass, in combination with our custom-designed illumination platform, can expand its functionality to be used as a chlorophyll meter in field-settings.

  • Google Glass based immunochromatographic diagnostic test analysis
    Proceedings of SPIE, 2015
    Co-Authors: Steve Feng, Romain Caire, Bingen Cortazar, Mehmet Turan, Andrew L Wong, Aydogan Ozcan
    Abstract:

    Integration of optical imagers and sensors into recently emerging wearable computational devices allows for simpler and more intuitive methods of integrating biomedical imaging and medical diagnostics tasks into existing infrastructures. Here we demonstrate the ability of one such device, the Google Glass, to perform qualitative and quantitative analysis of immunochromatographic rapid diagnostic tests (RDTs) using a voice-commandable hands-free software-only interface, as an alternative to larger and more bulky desktop or handheld units. Using the built-in camera of Glass to image one or more RDTs (labeled with Quick Response (QR) codes), our Glass software application uploads the captured image and related information (e.g., user name, GPS, etc.) to our servers for remote analysis and storage. After digital analysis of the RDT images, the results are transmitted back to the originating Glass device, and made available through a website in geospatial and tabular representations. We tested this system on qualitative human immunodeficiency virus (HIV) and quantitative prostate-specific antigen (PSA) RDTs. For qualitative HIV tests, we demonstrate successful detection and labeling (i.e., yes/no decisions) for up to 6-fold dilution of HIV samples. For quantitative measurements, we activated and imaged PSA concentrations ranging from 0 to 200 ng/mL and generated calibration curves relating the RDT line intensity values to PSA concentration. By providing automated digitization of both qualitative and quantitative test results, this wearable colorimetric diagnostic test reader platform on Google Glass can reduce operator errors caused by poor training, provide real-time spatiotemporal mapping of test results, and assist with remote monitoring of various biomedical conditions.

  • immunochromatographic diagnostic test analysis using Google Glass
    ACS Nano, 2014
    Co-Authors: Steve Feng, Romain Caire, Bingen Cortazar, Mehmet Turan, Andrew L Wong, Aydogan Ozcan
    Abstract:

    We demonstrate a Google Glass-based rapid diagnostic test (RDT) reader platform capable of qualitative and quantitative measurements of various lateral flow immunochromatographic assays and similar biomedical diagnostics tests. Using a custom-written Glass application and without any external hardware attachments, one or more RDTs labeled with Quick Response (QR) code identifiers are simultaneously imaged using the built-in camera of the Google Glass that is based on a hands-free and voice-controlled interface and digitally transmitted to a server for digital processing. The acquired JPEG images are automatically processed to locate all the RDTs and, for each RDT, to produce a quantitative diagnostic result, which is returned to the Google Glass (i.e., the user) and also stored on a central server along with the RDT image, QR code, and other related information (e.g., demographic data). The same server also provides a dynamic spatiotemporal map and real-time statistics for uploaded RDT results accessible through Internet browsers. We tested this Google Glass-based diagnostic platform using qualitative (i.e., yes/no) human immunodeficiency virus (HIV) and quantitative prostate-specific antigen (PSA) tests. For the quantitative RDTs, we measured activated tests at various concentrations ranging from 0 to 200 ng/mL for free and total PSA. This wearable RDT reader platform running on Google Glass combines a hands-free sensing and image capture interface with powerful servers running our custom image processing codes, and it can be quite useful for real-time spatiotemporal tracking of various diseases and personal medical conditions, providing a valuable tool for epidemiology and mobile health.

Steve Feng - One of the best experts on this subject based on the ideXlab platform.

  • Google Glass based rapid analysis of immuno chromatographic diagnostic tests
    Frontiers in Optics, 2015
    Co-Authors: Steve Feng, Romain Caire, Bingen Cortazar, Mehmet Turan, Andrew L Wong, Aydogan Ozcan
    Abstract:

    For rapid, real-time disease diagnostics, we demonstrate the ability of the Google Glass to perform qualitative and quantitative analysis of lateral-flow immuno-chromatographic diagnostic tests.

  • quantification of plant chlorophyll content using Google Glass
    Lab on a Chip, 2015
    Co-Authors: Bingen Cortazar, Steve Feng, Hatice Ceylan Koydemir, Derek Tseng, Aydogan Ozcan
    Abstract:

    Measuring plant chlorophyll concentration is a well-known and commonly used method in agriculture and environmental applications for monitoring plant health, which also correlates with many other plant parameters including, e.g., carotenoids, nitrogen, maximum green fluorescence, etc. Direct chlorophyll measurement using chemical extraction is destructive, complex and time-consuming, which has led to the development of mobile optical readers, providing non-destructive but at the same time relatively expensive tools for evaluation of plant chlorophyll levels. Here we demonstrate accurate measurement of chlorophyll concentration in plant leaves using Google Glass and a custom-developed software application together with a cost-effective leaf holder and multi-spectral illuminator device. Two images, taken using Google Glass, of a leaf placed in our portable illuminator device under red and white (i.e., broadband) light-emitting-diode (LED) illumination are uploaded to our servers for remote digital processing and chlorophyll quantification, with results returned to the user in less than 10 seconds. Intensity measurements extracted from the uploaded images are mapped against gold-standard colorimetric measurements made through a commercially available reader to generate calibration curves for plant leaf chlorophyll concentration. Using five plant species to calibrate our system, we demonstrate that our approach can accurately and rapidly estimate chlorophyll concentration of fifteen different plant species under both indoor and outdoor lighting conditions. This Google Glass based chlorophyll measurement platform can display the results in spatiotemporal and tabular forms and would be highly useful for monitoring of plant health in environmental and agriculture related applications, including e.g., urban plant monitoring, indirect measurements of the effects of climate change, and as an early indicator for water, soil, and air quality degradation.

  • field quantification of plant chlorophyll content using Google Glass
    Proceedings of SPIE, 2015
    Co-Authors: Bingen Cortazar, Steve Feng, Hatice Ceylan Koydemir, Derek Tseng, Aydogan Ozcan
    Abstract:

    Quantification of plant health is crucial for agriculture and can even be used to monitor environmental factors and climate related changes. Plant health is known to be directly related to the chlorophyll content of leaves, which correlates with the capacity of the leaves to transmit or absorb light. The gold-standard method for measuring the chlorophyll concentration of a leaf is based on chemical extraction, which is complex, destructive and time-consuming. As an alternative, here we present a field-portable, cost-effective, and colorimetric method to quantify the chlorophyll content of leaves using Google Glass. For this purpose, we created a custom designed handheld device which is battery-powered and 3D-printed to separately provide uniform illumination of a selected region of interest on the leaf surface using red and white light-emitting-diodes (LEDs). The design of this device minimizes the interference of ambient light conditions to our chlorophyll measurements performed through the Glass camera. We tested this platform by using fifteen randomly selected plant species from UCLA Botanical Garden and imaging fully-grown leaves of these species using Glass. An image-processing algorithm was developed to process the acquired images and obtain the chlorophyll concentration information using the red channel intensities in our region-of-interest for both the white and red LED illumination conditions. The results obtained by this algorithm are in good agreement with the SPAD indices measured for each plant, demonstrating that Google Glass, in combination with our custom-designed illumination platform, can expand its functionality to be used as a chlorophyll meter in field-settings.

  • Google Glass based immunochromatographic diagnostic test analysis
    Proceedings of SPIE, 2015
    Co-Authors: Steve Feng, Romain Caire, Bingen Cortazar, Mehmet Turan, Andrew L Wong, Aydogan Ozcan
    Abstract:

    Integration of optical imagers and sensors into recently emerging wearable computational devices allows for simpler and more intuitive methods of integrating biomedical imaging and medical diagnostics tasks into existing infrastructures. Here we demonstrate the ability of one such device, the Google Glass, to perform qualitative and quantitative analysis of immunochromatographic rapid diagnostic tests (RDTs) using a voice-commandable hands-free software-only interface, as an alternative to larger and more bulky desktop or handheld units. Using the built-in camera of Glass to image one or more RDTs (labeled with Quick Response (QR) codes), our Glass software application uploads the captured image and related information (e.g., user name, GPS, etc.) to our servers for remote analysis and storage. After digital analysis of the RDT images, the results are transmitted back to the originating Glass device, and made available through a website in geospatial and tabular representations. We tested this system on qualitative human immunodeficiency virus (HIV) and quantitative prostate-specific antigen (PSA) RDTs. For qualitative HIV tests, we demonstrate successful detection and labeling (i.e., yes/no decisions) for up to 6-fold dilution of HIV samples. For quantitative measurements, we activated and imaged PSA concentrations ranging from 0 to 200 ng/mL and generated calibration curves relating the RDT line intensity values to PSA concentration. By providing automated digitization of both qualitative and quantitative test results, this wearable colorimetric diagnostic test reader platform on Google Glass can reduce operator errors caused by poor training, provide real-time spatiotemporal mapping of test results, and assist with remote monitoring of various biomedical conditions.

  • immunochromatographic diagnostic test analysis using Google Glass
    ACS Nano, 2014
    Co-Authors: Steve Feng, Romain Caire, Bingen Cortazar, Mehmet Turan, Andrew L Wong, Aydogan Ozcan
    Abstract:

    We demonstrate a Google Glass-based rapid diagnostic test (RDT) reader platform capable of qualitative and quantitative measurements of various lateral flow immunochromatographic assays and similar biomedical diagnostics tests. Using a custom-written Glass application and without any external hardware attachments, one or more RDTs labeled with Quick Response (QR) code identifiers are simultaneously imaged using the built-in camera of the Google Glass that is based on a hands-free and voice-controlled interface and digitally transmitted to a server for digital processing. The acquired JPEG images are automatically processed to locate all the RDTs and, for each RDT, to produce a quantitative diagnostic result, which is returned to the Google Glass (i.e., the user) and also stored on a central server along with the RDT image, QR code, and other related information (e.g., demographic data). The same server also provides a dynamic spatiotemporal map and real-time statistics for uploaded RDT results accessible through Internet browsers. We tested this Google Glass-based diagnostic platform using qualitative (i.e., yes/no) human immunodeficiency virus (HIV) and quantitative prostate-specific antigen (PSA) tests. For the quantitative RDTs, we measured activated tests at various concentrations ranging from 0 to 200 ng/mL for free and total PSA. This wearable RDT reader platform running on Google Glass combines a hands-free sensing and image capture interface with powerful servers running our custom image processing codes, and it can be quite useful for real-time spatiotemporal tracking of various diseases and personal medical conditions, providing a valuable tool for epidemiology and mobile health.

Bingen Cortazar - One of the best experts on this subject based on the ideXlab platform.

  • Google Glass based rapid analysis of immuno chromatographic diagnostic tests
    Frontiers in Optics, 2015
    Co-Authors: Steve Feng, Romain Caire, Bingen Cortazar, Mehmet Turan, Andrew L Wong, Aydogan Ozcan
    Abstract:

    For rapid, real-time disease diagnostics, we demonstrate the ability of the Google Glass to perform qualitative and quantitative analysis of lateral-flow immuno-chromatographic diagnostic tests.

  • quantification of plant chlorophyll content using Google Glass
    Lab on a Chip, 2015
    Co-Authors: Bingen Cortazar, Steve Feng, Hatice Ceylan Koydemir, Derek Tseng, Aydogan Ozcan
    Abstract:

    Measuring plant chlorophyll concentration is a well-known and commonly used method in agriculture and environmental applications for monitoring plant health, which also correlates with many other plant parameters including, e.g., carotenoids, nitrogen, maximum green fluorescence, etc. Direct chlorophyll measurement using chemical extraction is destructive, complex and time-consuming, which has led to the development of mobile optical readers, providing non-destructive but at the same time relatively expensive tools for evaluation of plant chlorophyll levels. Here we demonstrate accurate measurement of chlorophyll concentration in plant leaves using Google Glass and a custom-developed software application together with a cost-effective leaf holder and multi-spectral illuminator device. Two images, taken using Google Glass, of a leaf placed in our portable illuminator device under red and white (i.e., broadband) light-emitting-diode (LED) illumination are uploaded to our servers for remote digital processing and chlorophyll quantification, with results returned to the user in less than 10 seconds. Intensity measurements extracted from the uploaded images are mapped against gold-standard colorimetric measurements made through a commercially available reader to generate calibration curves for plant leaf chlorophyll concentration. Using five plant species to calibrate our system, we demonstrate that our approach can accurately and rapidly estimate chlorophyll concentration of fifteen different plant species under both indoor and outdoor lighting conditions. This Google Glass based chlorophyll measurement platform can display the results in spatiotemporal and tabular forms and would be highly useful for monitoring of plant health in environmental and agriculture related applications, including e.g., urban plant monitoring, indirect measurements of the effects of climate change, and as an early indicator for water, soil, and air quality degradation.

  • field quantification of plant chlorophyll content using Google Glass
    Proceedings of SPIE, 2015
    Co-Authors: Bingen Cortazar, Steve Feng, Hatice Ceylan Koydemir, Derek Tseng, Aydogan Ozcan
    Abstract:

    Quantification of plant health is crucial for agriculture and can even be used to monitor environmental factors and climate related changes. Plant health is known to be directly related to the chlorophyll content of leaves, which correlates with the capacity of the leaves to transmit or absorb light. The gold-standard method for measuring the chlorophyll concentration of a leaf is based on chemical extraction, which is complex, destructive and time-consuming. As an alternative, here we present a field-portable, cost-effective, and colorimetric method to quantify the chlorophyll content of leaves using Google Glass. For this purpose, we created a custom designed handheld device which is battery-powered and 3D-printed to separately provide uniform illumination of a selected region of interest on the leaf surface using red and white light-emitting-diodes (LEDs). The design of this device minimizes the interference of ambient light conditions to our chlorophyll measurements performed through the Glass camera. We tested this platform by using fifteen randomly selected plant species from UCLA Botanical Garden and imaging fully-grown leaves of these species using Glass. An image-processing algorithm was developed to process the acquired images and obtain the chlorophyll concentration information using the red channel intensities in our region-of-interest for both the white and red LED illumination conditions. The results obtained by this algorithm are in good agreement with the SPAD indices measured for each plant, demonstrating that Google Glass, in combination with our custom-designed illumination platform, can expand its functionality to be used as a chlorophyll meter in field-settings.

  • Google Glass based immunochromatographic diagnostic test analysis
    Proceedings of SPIE, 2015
    Co-Authors: Steve Feng, Romain Caire, Bingen Cortazar, Mehmet Turan, Andrew L Wong, Aydogan Ozcan
    Abstract:

    Integration of optical imagers and sensors into recently emerging wearable computational devices allows for simpler and more intuitive methods of integrating biomedical imaging and medical diagnostics tasks into existing infrastructures. Here we demonstrate the ability of one such device, the Google Glass, to perform qualitative and quantitative analysis of immunochromatographic rapid diagnostic tests (RDTs) using a voice-commandable hands-free software-only interface, as an alternative to larger and more bulky desktop or handheld units. Using the built-in camera of Glass to image one or more RDTs (labeled with Quick Response (QR) codes), our Glass software application uploads the captured image and related information (e.g., user name, GPS, etc.) to our servers for remote analysis and storage. After digital analysis of the RDT images, the results are transmitted back to the originating Glass device, and made available through a website in geospatial and tabular representations. We tested this system on qualitative human immunodeficiency virus (HIV) and quantitative prostate-specific antigen (PSA) RDTs. For qualitative HIV tests, we demonstrate successful detection and labeling (i.e., yes/no decisions) for up to 6-fold dilution of HIV samples. For quantitative measurements, we activated and imaged PSA concentrations ranging from 0 to 200 ng/mL and generated calibration curves relating the RDT line intensity values to PSA concentration. By providing automated digitization of both qualitative and quantitative test results, this wearable colorimetric diagnostic test reader platform on Google Glass can reduce operator errors caused by poor training, provide real-time spatiotemporal mapping of test results, and assist with remote monitoring of various biomedical conditions.

  • immunochromatographic diagnostic test analysis using Google Glass
    ACS Nano, 2014
    Co-Authors: Steve Feng, Romain Caire, Bingen Cortazar, Mehmet Turan, Andrew L Wong, Aydogan Ozcan
    Abstract:

    We demonstrate a Google Glass-based rapid diagnostic test (RDT) reader platform capable of qualitative and quantitative measurements of various lateral flow immunochromatographic assays and similar biomedical diagnostics tests. Using a custom-written Glass application and without any external hardware attachments, one or more RDTs labeled with Quick Response (QR) code identifiers are simultaneously imaged using the built-in camera of the Google Glass that is based on a hands-free and voice-controlled interface and digitally transmitted to a server for digital processing. The acquired JPEG images are automatically processed to locate all the RDTs and, for each RDT, to produce a quantitative diagnostic result, which is returned to the Google Glass (i.e., the user) and also stored on a central server along with the RDT image, QR code, and other related information (e.g., demographic data). The same server also provides a dynamic spatiotemporal map and real-time statistics for uploaded RDT results accessible through Internet browsers. We tested this Google Glass-based diagnostic platform using qualitative (i.e., yes/no) human immunodeficiency virus (HIV) and quantitative prostate-specific antigen (PSA) tests. For the quantitative RDTs, we measured activated tests at various concentrations ranging from 0 to 200 ng/mL for free and total PSA. This wearable RDT reader platform running on Google Glass combines a hands-free sensing and image capture interface with powerful servers running our custom image processing codes, and it can be quite useful for real-time spatiotemporal tracking of various diseases and personal medical conditions, providing a valuable tool for epidemiology and mobile health.

Reza Yassari - One of the best experts on this subject based on the ideXlab platform.

  • use of Google Glass to enhance surgical education of neurosurgery residents proof of concept study
    World Neurosurgery, 2017
    Co-Authors: Jonathan Nakhla, Andrew Kobets, Rafeal De La Garza Ramos, Neil Haranhalli, Yaroslav Gelfand, Adam Ammar, Murray Echt, Aleka Scoco, Merritt D Kinon, Reza Yassari
    Abstract:

    Background The relatively decreased time spent in the operating room and overall reduction in cases performed by neurosurgical trainees as a result of duty-hour restrictions demands that the pedagogical content within each surgical encounter be maximized and crafted toward the specific talents and shortcomings of the individual. It is imperative to future generations that the quality of training adapts to the changing administrative infrastructures and compensates for anything that may compromise the technical abilities of trainees. Neurosurgeons in teaching hospitals continue to experiment with various emerging technologies—such as simulators and virtual presence—to supplement and improve surgical training. Methods The authors participated in the Google Glass Explorer Program in order to assess the applicability of Google Glass as a tool to enhance the operative education of neurosurgical residents. Google Glass is a type of wearable technology in the form of eyeGlasses that employs a high-definition camera and allows the user to interact using voice commands. Results Google Glass was able to effectively capture video segments of various lengths for residents to review in a variety of clinical settings within a large, tertiary care university hospital, as well as during a surgical mission to a developing country. The resolution and quality of the video were adequate to review and use as a teaching tool. Conclusion While Google Glass harbors the potential to dramatically improve both neurosurgical education and practice in a variety of ways, certain technical drawbacks of the current model limit its effectiveness as a teaching tool.

  • use of Google Glass to enhance surgical education of neurosurgery residents proof of concept study
    World Neurosurgery, 2017
    Co-Authors: Jonathan Nakhla, Rafeal De La Garza Ramos, Neil Haranhalli, Yaroslav Gelfand, Adam Ammar, Murray Echt, Aleka Scoco, Merritt D Kinon, Andrew J Kobets, Reza Yassari
    Abstract:

    Background The relatively decreased time spent in the operating room and overall reduction in cases performed by neurosurgical trainees as a result of duty-hour restrictions demands that the pedagogical content within each surgical encounter be maximized and crafted toward the specific talents and shortcomings of the individual. It is imperative to future generations that the quality of training adapts to the changing administrative infrastructures and compensates for anything that may compromise the technical abilities of trainees. Neurosurgeons in teaching hospitals continue to experiment with various emerging technologies—such as simulators and virtual presence—to supplement and improve surgical training. Methods The authors participated in the Google Glass Explorer Program in order to assess the applicability of Google Glass as a tool to enhance the operative education of neurosurgical residents. Google Glass is a type of wearable technology in the form of eyeGlasses that employs a high-definition camera and allows the user to interact using voice commands. Results Google Glass was able to effectively capture video segments of various lengths for residents to review in a variety of clinical settings within a large, tertiary care university hospital, as well as during a surgical mission to a developing country. The resolution and quality of the video were adequate to review and use as a teaching tool. Conclusion While Google Glass harbors the potential to dramatically improve both neurosurgical education and practice in a variety of ways, certain technical drawbacks of the current model limit its effectiveness as a teaching tool.

Ozanan R Meireles - One of the best experts on this subject based on the ideXlab platform.

  • a blinded assessment of video quality in wearable technology for telementoring in open surgery the Google Glass experience
    Surgical Endoscopy and Other Interventional Techniques, 2016
    Co-Authors: Daniel A Hashimoto, Roy Phitayakorn, Carlos Fernandezdel Castillo, Ozanan R Meireles
    Abstract:

    The goal of telementoring is to recreate face-to-face encounters with a digital presence. Open-surgery telementoring is limited by lack of surgeon’s point-of-view cameras. Google Glass is a wearable computer that looks like a pair of Glasses but is equipped with wireless connectivity, a camera, and viewing screen for video conferencing. This study aimed to assess the safety of using Google Glass by assessing the video quality of a telementoring session. Thirty-four (n = 34) surgeons at a single institution were surveyed and blindly compared via video captured with Google Glass versus an Apple iPhone 5 during the open cholecystectomy portion of a Whipple. Surgeons were asked to evaluate the quality of the video and its adequacy for safe use in telementoring. Thirty-four of 107 invited surgical attendings (32 %) responded to the anonymous survey. A total of 50 % rated the Google Glass video as fair with the other 50 % rating it as bad to poor. A total of 52.9 % of respondents rated the Apple iPhone video as good. A significantly greater proportion of respondents felt Google Glass video quality was inadequate for telementoring versus the Apple iPhone’s (82.4 vs 26.5 %, p < 0.0001). Intraclass correlation coefficient was 0.924 (95 % CI 0.660–0.999, p < 0.001). While Google Glass provides a great breadth of functionality as a wearable device with two-way communication capabilities, current hardware limitations prevent its use as a telementoring device in surgery as the video quality is inadequate for safe telementoring. As the device is still in initial phases of development, future iterations or competitor devices may provide a better telementoring application for wearable devices.

  • a blinded assessment of video quality in wearable technology for telementoring in open surgery the Google Glass experience
    Surgical Endoscopy and Other Interventional Techniques, 2016
    Co-Authors: Daniel A Hashimoto, Roy Phitayakorn, Carlos Fernandezdel Castillo, Ozanan R Meireles
    Abstract:

    Background The goal of telementoring is to recreate face-to-face encounters with a digital presence. Open-surgery telementoring is limited by lack of surgeon’s point-of-view cameras. Google Glass is a wearable computer that looks like a pair of Glasses but is equipped with wireless connectivity, a camera, and viewing screen for video conferencing. This study aimed to assess the safety of using Google Glass by assessing the video quality of a telementoring session.