Gordonia

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 2214 Experts worldwide ranked by ideXlab platform

Nicholas S. Jakubovics - One of the best experts on this subject based on the ideXlab platform.

  • transcriptomic responses to coaggregation between streptococcus gordonii and streptococcus oralis
    Applied and Environmental Microbiology, 2021
    Co-Authors: Siew Woh Choo, Naresh V R Mutha, Waleed K Mohammed, Natalio Krasnogor, Nadia Rostami, Halah Ahmed, Geok Yuan Annie Tan, Nicholas S. Jakubovics
    Abstract:

    Cell-cell adhesion between oral bacteria plays a key role in the development of polymicrobial communities such as dental plaque. Oral streptococci such as Streptococcus gordonii and Streptococcus oralis are important early colonizers of dental plaque and bind to a wide range of different oral microorganisms, forming multispecies clumps or "coaggregates." S. gordonii actively responds to coaggregation by regulating gene expression. To further understand these responses, we assessed gene regulation in S. gordonii and S. oralis following coaggregation in 25% human saliva. Coaggregates were formed by mixing, and after 30 min, RNA was extracted for dual transcriptome sequencing (RNA-Seq) analysis. In S. oralis, 18 genes (6 upregulated and 12 downregulated) were regulated by coaggregation. Significantly downregulated genes encoded functions such as amino acid and antibiotic biosynthesis, ribosome, and central carbon metabolism. In total, 28 genes were differentially regulated in Streptococcus gordonii (25 upregulated and 3 downregulated). Many genes associated with transporters and a two-component (NisK/SpaK) regulatory system were upregulated following coaggregation. Our comparative analyses of S. gordonii-S. oralis with different previously published S. gordonii pairings (S. gordonii-Fusobacterium nucleatum and S. gordonii-Veillonella parvula) suggest that the gene regulation is specific to each pairing, and responses do not appear to be conserved. This ability to distinguish between neighboring bacteria may be important for S. gordonii to adapt appropriately during the development of complex biofilms such as dental plaque. IMPORTANCE Dental plaque is responsible for two of the most prevalent diseases in humans, dental caries and periodontitis. Controlling the formation of dental plaque and preventing the transition from oral health to disease requires a detailed understanding of microbial colonization and biofilm development. Streptococci are among the most common colonizers of dental plaque. This study identifies key genes that are regulated when oral streptococci bind to one another, as they do in the early stages of dental plaque formation. We show that specific genes are regulated in two different oral streptococci following the formation of mixed-species aggregates. The specific responses of S. gordonii to coaggregation with S. oralis are different from those to coaggregation with other oral bacteria. Targeting the key genes that are upregulated during interspecies interactions may be a powerful approach to control the development of biofilm and maintain oral health.

  • transcriptional profiling of coaggregation interactions between streptococcus gordonii and veillonella parvula by dual rna seq
    Scientific Reports, 2019
    Co-Authors: Naresh V R Mutha, Waleed K Mohammed, Siew Woh Choo, Natalio Krasnogor, Yongming Li, Nicholas S. Jakubovics
    Abstract:

    Many oral bacteria form macroscopic clumps known as coaggregates when mixed with a different species. It is thought that these cell-cell interactions are critical for the formation of mixed-species biofilms such as dental plaque. Here, we assessed the impact of coaggregation between two key initial colonizers of dental plaque, Streptococcus gordonii and Veillonella parvula, on gene expression in each partner. These species were shown to coaggregate in buffer or human saliva. To monitor gene regulation, coaggregates were formed in human saliva and, after 30 minutes, whole-transcriptomes were extracted for sequencing and Dual RNA-Seq analysis. In total, 272 genes were regulated in V. parvula, including 39 genes in oxidoreductase processes. In S. gordonii, there was a high degree of inter-sample variation. Nevertheless, 69 genes were identified as potentially regulated by coaggregation, including two phosphotransferase system transporters and several other genes involved in carbohydrate metabolism. Overall, these data indicate that responses of V. parvula to coaggregation with S. gordonii are dominated by oxidative stress-related processes, whereas S. gordonii responses are more focussed on carbohydrate metabolism. We hypothesize that these responses may reflect changes in the local microenvironment in biofilms when S. gordonii or V. parvula immigrate into the system.

  • distinct biological potential of streptococcus gordonii and streptococcus sanguinis revealed by comparative genome analysis
    Scientific Reports, 2017
    Co-Authors: Wenning Zheng, Ian C Paterson, Siew Woh Choo, Nicholas S. Jakubovics
    Abstract:

    Streptococcus gordonii and Streptococcus sanguinis are pioneer colonizers of dental plaque and important agents of bacterial infective endocarditis (IE). To gain a greater understanding of these two closely related species, we performed comparative analyses on 14 new S. gordonii and 5 S. sanguinis strains using various bioinformatics approaches. We revealed S. gordonii and S. sanguinis harbor open pan-genomes and share generally high sequence homology and number of core genes including virulence genes. However, we observed subtle differences in genomic islands and prophages between the species. Comparative pathogenomics analysis identified S. sanguinis strains have genes encoding IgA proteases, mitogenic factor deoxyribonucleases, nickel/cobalt uptake and cobalamin biosynthesis. On the contrary, genomic islands of S. gordonii strains contain additional copies of comCDE quorum-sensing system components involved in genetic competence. Two distinct polysaccharide locus architectures were identified, one of which was exclusively present in S. gordonii strains. The first evidence of genes encoding the CylA and CylB system by the α-haemolytic S. gordonii is presented. This study provides new insights into the genetic distinctions between S. gordonii and S. sanguinis, which yields understanding of tooth surfaces colonization and contributions to dental plaque formation, as well as their potential roles in the pathogenesis of IE.

  • critical roles of arginine in growth and biofilm development by streptococcus gordonii
    Molecular Microbiology, 2015
    Co-Authors: Nicholas S. Jakubovics, Jill C Robinson, Derek S Samarian, Ethan Kolderman, Sufian A Yassin, Deepti Bettampadi, Matthew Bashton, Alexander H Rickard
    Abstract:

    Summary Streptococcus gordonii is an oral commensal and an early coloniser of dental plaque. In vitro, S. gordonii is conditionally auxotrophic for arginine in monoculture but biosynthesises arginine when coaggregated with Actinomyces oris. Here, we investigated the arginine-responsive regulatory network of S. gordonii and the basis for conditional arginine auxotrophy. ArcB, the catabolic ornithine carbamoyltransferase involved in arginine degradation, was also essential for arginine biosynthesis. However, arcB was poorly expressed following arginine depletion, indicating that arcB levels may limit S. gordonii arginine biosynthesis. Arginine metabolism gene expression was tightly co-ordinated by three ArgR/AhrC family regulators, encoded by argR, ahrC and arcR genes. Microarray analysis revealed that > 450 genes were regulated in response to rapid shifts in arginine concentration, including many genes involved in adhesion and biofilm formation. In a microfluidic salivary biofilm model, low concentrations of arginine promoted S. gordonii growth, whereas high concentrations (> 5 mM arginine) resulted in dramatic reductions in biofilm biomass and changes to biofilm architecture. Collectively, these data indicate that arginine metabolism is tightly regulated in S. gordonii and that arginine is critical for gene regulation, cellular growth and biofilm formation. Manipulating exogenous arginine concentrations may be an attractive approach for oral biofilm control.

  • multiple adhesin proteins on the cell surface of streptococcus gordonii are involved in adhesion to human fibronectin
    Microbiology, 2009
    Co-Authors: Nicholas S. Jakubovics, Jane L Brittan, Lindsay C Dutton, Howard F Jenkinson
    Abstract:

    Adhesion of bacterial cells to fibronectin (FN) is thought to be a pivotal step in the pathogenesis of invasive infectious diseases. Viridans group streptococci such as Streptococcus gordonii are considered commensal members of the oral microflora, but are important pathogens in infective endocarditis. S. gordonii expresses a battery of cell-surface adhesins that act alone or in concert to bind host receptors. Here, we employed molecular genetic approaches to determine the relative contributions of five known S. gordonii surface proteins to adherence to human FN. Binding levels to FN by isogenic mutants lacking Hsa glycoprotein were reduced by 70 %, while mutants lacking CshA and CshB fibrillar proteins showed approximately 30 % reduced binding. By contrast, disruption of antigen I/II adhesin genes sspA and sspB in a wild-type background did not result in reduced FN binding. Enzymic removal of sialic acids from FN led to reduced S. gordonii DL1 adhesion (>50 %), but did not affect binding by the hsa mutant, indicating that Hsa interacts with sialic acid moieties on FN. Conversely, desialylation of FN did not affect adherence levels of Lactococcus lactis cells expressing SspA or SspB polypeptides. Complementation of the hsa mutant partially restored adhesion to FN. A model is proposed for FN binding by S. gordonii in which Hsa and CshA/CshB are primary adhesins, and SspA or SspB play secondary roles. Understanding the basis of oral streptococcal interactions with FN will provide a foundation for development of new strategies to control infective endocarditis.

June M Brown - One of the best experts on this subject based on the ideXlab platform.

Howard F Jenkinson - One of the best experts on this subject based on the ideXlab platform.

  • Original Research: Focus on Platelets Mechanism of Outside-In IIb3-Mediated Activation of Human Platelets by the Colonizing Bacterium, Streptococcus gordonii*
    2016
    Co-Authors: Ciara Keane, Howard F Jenkinson, Dermot Cox, Helen Petersen, Kieran Reynolds, Debra K. Newman, Peter J. Newman, Steven W Kerrigan
    Abstract:

    Objective—To better understand the mechanism of platelet recruitment and activation by Streptococcus gordonii. The oral bacterium Streptococcus gordonii, is amongst the most common pathogens isolated from Infective Endocarditis patients, and has the property of being able to activate platelets, leading to thrombotic complications. The mechanism of platelet recruitment and activation by S. gordonii is poorly understood. Methods and Results—Infective endocarditis is a bacterial infection of the heart valves that carries a high risk of morbidity and mortality. The oral bacterium, S gordonii, is among the most common pathogens isolated from patients with infective endocarditis and is able to activate platelets, leading to thrombotic complications. Platelets interact with S gordonii via glycoprotein Ib- and IIb3-recognizing S gordonii surface proteins haemaglutitin salivary antigen (Hsa) and platelet adherence protein A, respectively. The inhibition of glycoprotein Ib or IIb3 using blocking antibodies or deletion of S gordonii Hsa or platelet adherence protein A significantly reduces platelet adhesion. Immunoreceptor tyrosine-based activation motif (ITAM)-containing proteins have recently played a role in transmitting activating signals into platelets. Platelet adhesion to immobilized S gordonii resulted in tyrosine phosphorylation of the ITAM-bearing receptor, FcRIIa, and phosphorylation of downstream effectors (ie, spleen tyrosine kinase [Syk] and phospholipase C [PLC]-2). Tyrosine phosphorylation of FcRIIa resulted in platelet-dense granule secretion, filopodial and lamellipodial extension, and platelet spreading. Inhibition o

  • interaction of candida albicans cell wall als3 protein with streptococcus gordonii sspb adhesin promotes development of mixed species communities
    Infection and Immunity, 2010
    Co-Authors: Richard J Silverman, M M Vickerman, Angela H Nobbs, Michele E Barbour, Howard F Jenkinson
    Abstract:

    Candida albicans colonizes human mucosa and prosthetic surfaces associated with artificial joints, catheters, and dentures. In the oral cavity, C. albicans coexists with numerous bacterial species, and evidence suggests that bacteria may modulate fungal growth and biofilm formation. Streptococcus gordonii is found on most oral cavity surfaces and interacts with C. albicans to promote hyphal and biofilm formation. In this study, we investigated the role of the hyphal-wall protein Als3p in interactions of C. albicans with S. gordonii . Utilizing an ALS3 deletion mutant strain, it was shown that cells were not affected in initial adherence to the salivary pellicle or in hyphal formation in the planktonic phase. However, the Als3 − mutant was unable to form biofilms on the salivary pellicle or deposited S. gordonii DL1 wild-type cells, and after initial adherence, als3 Δ /als3 Δ (Δ ALS3 ) cells became detached concomitant with hyphal formation. In coaggregation assays, S. gordonii cells attached to, and accumulated around, hyphae formed by C. albicans wild-type cells. However, streptococci failed to attach to hyphae produced by the Δ ALS3 mutant. Saccharomyces cerevisiae S150-2B cells expressing Als3p, but not control cells, supported binding of S. gordonii DL1. However, S. gordonii Δ( sspA sspB ) cells deficient in production of the surface protein adhesins SspA and SspB showed >50% reduced levels of binding to S. cerevisiae expressing Als3p. Lactococcus lactis cells expressing SspB bound avidly to S. cerevisiae expressing Als3p, but not to S150-2B wild-type cells. These results show that recognition of C. albicans by S. gordonii involves Als3 protein-SspB protein interaction, defining a novel mechanism in fungal-bacterial communication.

  • human platelets recognize a novel surface protein pada on streptococcus gordonii through a unique interaction involving fibrinogen receptor gpiibiiia
    Infection and Immunity, 2010
    Co-Authors: Helen J Petersen, M M Vickerman, A M Jesionowski, Howard F Jenkinson, Ciara Keane, Janet C Waterhouse, Dermot Cox, Steven W Kerrigan
    Abstract:

    The concept of an infectious agent playing a role in cardiovascular disease is slowly gaining attention. Among several pathogens identified, the oral bacterium Streptococcus gordonii has been implicated as a plausible agent. Platelet adhesion and subsequent aggregation are critical events in the pathogenesis and dissemination of the infective process. Here we describe the identification and characterization of a novel cell wall-anchored surface protein, PadA (397 kDa), of S. gordonii DL1 that binds to the platelet fibrinogen receptor GPIIbIIIa. Wild-type S. gordonii cells induced platelet aggregation and supported platelet adhesion in a GPIIbIIIa-dependent manner. Deletion of the padA gene had no effect on platelet aggregation by S. gordonii but significantly reduced (>75%) platelet adhesion to S. gordonii. Purified N-terminal PadA recombinant polypeptide adhered to platelets. The padA mutant was unaffected in production of other platelet-interactive surface proteins (Hsa, SspA, and SspB), and levels of adherence of the mutant to fetuin or platelet receptor GPIb were unaffected. Wild-type S. gordonii, but not the padA mutant, bound to Chinese hamster ovary cells stably transfected with GPIIbIIIa, and this interaction was ablated by addition of GPIIbIIIa inhibitor Abciximab. These results highlight the growing complexity of interactions between S. gordonii and platelets and demonstrate a new mechanism by which the bacterium could contribute to unwanted thrombosis.

  • multiple adhesin proteins on the cell surface of streptococcus gordonii are involved in adhesion to human fibronectin
    Microbiology, 2009
    Co-Authors: Nicholas S. Jakubovics, Jane L Brittan, Lindsay C Dutton, Howard F Jenkinson
    Abstract:

    Adhesion of bacterial cells to fibronectin (FN) is thought to be a pivotal step in the pathogenesis of invasive infectious diseases. Viridans group streptococci such as Streptococcus gordonii are considered commensal members of the oral microflora, but are important pathogens in infective endocarditis. S. gordonii expresses a battery of cell-surface adhesins that act alone or in concert to bind host receptors. Here, we employed molecular genetic approaches to determine the relative contributions of five known S. gordonii surface proteins to adherence to human FN. Binding levels to FN by isogenic mutants lacking Hsa glycoprotein were reduced by 70 %, while mutants lacking CshA and CshB fibrillar proteins showed approximately 30 % reduced binding. By contrast, disruption of antigen I/II adhesin genes sspA and sspB in a wild-type background did not result in reduced FN binding. Enzymic removal of sialic acids from FN led to reduced S. gordonii DL1 adhesion (>50 %), but did not affect binding by the hsa mutant, indicating that Hsa interacts with sialic acid moieties on FN. Conversely, desialylation of FN did not affect adherence levels of Lactococcus lactis cells expressing SspA or SspB polypeptides. Complementation of the hsa mutant partially restored adhesion to FN. A model is proposed for FN binding by S. gordonii in which Hsa and CshA/CshB are primary adhesins, and SspA or SspB play secondary roles. Understanding the basis of oral streptococcal interactions with FN will provide a foundation for development of new strategies to control infective endocarditis.

  • expression of green fluorescent protein in streptococcus gordonii dl1 and its use as a species specific marker in coadhesion with streptococcus oralis 34 in saliva conditioned biofilms in vitro
    Applied and Environmental Microbiology, 2000
    Co-Authors: Marcelo B Aspiras, Paul E Kolenbrander, Karen Kazmerzak, Roderick Mcnab, Neil J Hardegen, Howard F Jenkinson
    Abstract:

    Streptococcus gordonii is one of the predominant streptococci in the biofilm ecology of the oral cavity. It interacts with other bacteria through receptor-adhesin complexes formed between cognate molecules on the surfaces of the partner cells. To study the spatial organization of S. gordonii DL1 in oral biofilms, we used green fluorescent protein (GFP) as a species-specific marker to identify S. gordonii in a two-species in vitro oral biofilm flowcell system. To drive expression of gfp, we isolated and characterized an endogenous S. gordonii promoter, PhppA, which is situated upstream of the chromosomal hppA gene encoding an oligopeptide-binding lipoprotein. A chromosomal chloramphenicol acetyltransferase (cat) gene fusion with PhppA was constructed and used to demonstrate that PhppA was highly active throughout the growth of bacteria in batch culture. A promoterless 0.8-kb gfp (′gfp) cassette was PCR amplified from pBJ169 and subcloned to replace the cat cassette downstream of the S. gordonii-derived PhppA in pMH109-HPP, generating pMA1. Subsequently, the PhppA-′gfp cassette was PCR amplified from pMA1 and subcloned into pDL277 and pVA838 to generate the Escherichia coli-S. gordonii shuttle vectors pMA2 and pMA3, respectively. Each vector was transformed into S. gordonii DL1 aerobically to ensure GFP expression. Flow cytometric analyses of aerobically grown transformant cultures were performed over a 24-h period, and results showed that GFP could be successfully expressed in S. gordonii DL1 from PhppA and that S. gordonii DL1 transformed with the PhppA-′gfp fusion plasmid stably maintained the fluorescent phenotype. Fluorescent S. gordonii DL1 transformants were used to elucidate the spatial arrangement of S. gordonii DL1 alone in biofilms or with the coadhesion partner Streptococcus oralis 34 in two-species biofilms in a saliva-conditioned in vitro flowcell system. These results show for the first time that GFP expression in oral streptococci can be used as a species-specific marker in model oral biofilms.

Doron Steinberg - One of the best experts on this subject based on the ideXlab platform.

  • The role of fructans on dental bio¢lm formation by Streptococcus sobrinus, Streptococcus mutans, Streptococcus gordonii
    2016
    Co-Authors: Actinomyces Viscosus, Ramona Rozen, Gilad Bachrach, Moshe Bronshteyn, I Gedalia, Doron Steinberg
    Abstract:

    Dental plaque biofilm plays a pivotal role in the progression of dental diseases. Polysaccharides are of great importance in the ecology of the dental biofilm. We studied the effect of fructans, glucans and a mixture of both fructans and glucans, synthesized in situ by immobilized fructosyltransferase or glucosyltransferase, on the adhesion of Streptococcus sobrinus, Streptococcus mutans, Streptococcus gordonii and Actinomyces viscosus to hydroxyapatite beads coated with human saliva (sHA). The adhesion of A. viscosus to sHA was found to be fructan-dependent. Adhesion of both S. sobrinus and S. mutans was found to be mediated mainly by glucans, while the adhesion of S. gordonii was found to be both glucan- and fructan-dependent. Treatment with fructanase prior to A. viscosus adhesion resulted in a significant reduction in adhesion to sHA, while adhesion of S. sobrinus, S. mutans and S. gordonii was slightly influenced by fructanase treatment. Treatment with fructanase after adhesion of S. gordonii to sHA resulted in a significant reduction in their adhesion to sHA. Our results show that fructans may play a role in the adhesion and colonization of several cariogenic bacteria to sHA, thus contributing to the formation of dental plaqu

  • the role of fructans on dental biofilm formation by streptococcus sobrinus streptococcus mutans streptococcus gordonii and actinomyces viscosus
    Fems Microbiology Letters, 2001
    Co-Authors: Ramona Rozen, Gilad Bachrach, Moshe Bronshteyn, I Gedalia, Doron Steinberg
    Abstract:

    Dental plaque biofilm plays a pivotal role in the progression of dental diseases. Polysaccharides are of great importance in the ecology of the dental biofilm. We studied the effect of fructans, glucans and a mixture of both fructans and glucans, synthesized in situ by immobilized fructosyltransferase or glucosyltransferase, on the adhesion of Streptococcus sobrinus, Streptococcus mutans, Streptococcus gordonii and Actinomyces viscosus to hydroxyapatite beads coated with human saliva (sHA). The adhesion of A. viscosus to sHA was found to be fructan-dependent. Adhesion of both S. sobrinus and S. mutans was found to be mediated mainly by glucans, while the adhesion of S. gordonii was found to be both glucan- and fructan-dependent. Treatment with fructanase prior to A. viscosus adhesion resulted in a significant reduction in adhesion to sHA, while adhesion of S. sobrinus, S. mutans and S. gordonii was slightly influenced by fructanase treatment. Treatment with fructanase after adhesion of S. gordonii to sHA resulted in a significant reduction in their adhesion to sHA. Our results show that fructans may play a role in the adhesion and colonization of several cariogenic bacteria to sHA, thus contributing to the formation of dental plaque biofilm.

Siew Woh Choo - One of the best experts on this subject based on the ideXlab platform.

  • transcriptomic responses to coaggregation between streptococcus gordonii and streptococcus oralis
    Applied and Environmental Microbiology, 2021
    Co-Authors: Siew Woh Choo, Naresh V R Mutha, Waleed K Mohammed, Natalio Krasnogor, Nadia Rostami, Halah Ahmed, Geok Yuan Annie Tan, Nicholas S. Jakubovics
    Abstract:

    Cell-cell adhesion between oral bacteria plays a key role in the development of polymicrobial communities such as dental plaque. Oral streptococci such as Streptococcus gordonii and Streptococcus oralis are important early colonizers of dental plaque and bind to a wide range of different oral microorganisms, forming multispecies clumps or "coaggregates." S. gordonii actively responds to coaggregation by regulating gene expression. To further understand these responses, we assessed gene regulation in S. gordonii and S. oralis following coaggregation in 25% human saliva. Coaggregates were formed by mixing, and after 30 min, RNA was extracted for dual transcriptome sequencing (RNA-Seq) analysis. In S. oralis, 18 genes (6 upregulated and 12 downregulated) were regulated by coaggregation. Significantly downregulated genes encoded functions such as amino acid and antibiotic biosynthesis, ribosome, and central carbon metabolism. In total, 28 genes were differentially regulated in Streptococcus gordonii (25 upregulated and 3 downregulated). Many genes associated with transporters and a two-component (NisK/SpaK) regulatory system were upregulated following coaggregation. Our comparative analyses of S. gordonii-S. oralis with different previously published S. gordonii pairings (S. gordonii-Fusobacterium nucleatum and S. gordonii-Veillonella parvula) suggest that the gene regulation is specific to each pairing, and responses do not appear to be conserved. This ability to distinguish between neighboring bacteria may be important for S. gordonii to adapt appropriately during the development of complex biofilms such as dental plaque. IMPORTANCE Dental plaque is responsible for two of the most prevalent diseases in humans, dental caries and periodontitis. Controlling the formation of dental plaque and preventing the transition from oral health to disease requires a detailed understanding of microbial colonization and biofilm development. Streptococci are among the most common colonizers of dental plaque. This study identifies key genes that are regulated when oral streptococci bind to one another, as they do in the early stages of dental plaque formation. We show that specific genes are regulated in two different oral streptococci following the formation of mixed-species aggregates. The specific responses of S. gordonii to coaggregation with S. oralis are different from those to coaggregation with other oral bacteria. Targeting the key genes that are upregulated during interspecies interactions may be a powerful approach to control the development of biofilm and maintain oral health.

  • transcriptional profiling of coaggregation interactions between streptococcus gordonii and veillonella parvula by dual rna seq
    Scientific Reports, 2019
    Co-Authors: Naresh V R Mutha, Waleed K Mohammed, Siew Woh Choo, Natalio Krasnogor, Yongming Li, Nicholas S. Jakubovics
    Abstract:

    Many oral bacteria form macroscopic clumps known as coaggregates when mixed with a different species. It is thought that these cell-cell interactions are critical for the formation of mixed-species biofilms such as dental plaque. Here, we assessed the impact of coaggregation between two key initial colonizers of dental plaque, Streptococcus gordonii and Veillonella parvula, on gene expression in each partner. These species were shown to coaggregate in buffer or human saliva. To monitor gene regulation, coaggregates were formed in human saliva and, after 30 minutes, whole-transcriptomes were extracted for sequencing and Dual RNA-Seq analysis. In total, 272 genes were regulated in V. parvula, including 39 genes in oxidoreductase processes. In S. gordonii, there was a high degree of inter-sample variation. Nevertheless, 69 genes were identified as potentially regulated by coaggregation, including two phosphotransferase system transporters and several other genes involved in carbohydrate metabolism. Overall, these data indicate that responses of V. parvula to coaggregation with S. gordonii are dominated by oxidative stress-related processes, whereas S. gordonii responses are more focussed on carbohydrate metabolism. We hypothesize that these responses may reflect changes in the local microenvironment in biofilms when S. gordonii or V. parvula immigrate into the system.

  • distinct biological potential of streptococcus gordonii and streptococcus sanguinis revealed by comparative genome analysis
    Scientific Reports, 2017
    Co-Authors: Wenning Zheng, Ian C Paterson, Siew Woh Choo, Nicholas S. Jakubovics
    Abstract:

    Streptococcus gordonii and Streptococcus sanguinis are pioneer colonizers of dental plaque and important agents of bacterial infective endocarditis (IE). To gain a greater understanding of these two closely related species, we performed comparative analyses on 14 new S. gordonii and 5 S. sanguinis strains using various bioinformatics approaches. We revealed S. gordonii and S. sanguinis harbor open pan-genomes and share generally high sequence homology and number of core genes including virulence genes. However, we observed subtle differences in genomic islands and prophages between the species. Comparative pathogenomics analysis identified S. sanguinis strains have genes encoding IgA proteases, mitogenic factor deoxyribonucleases, nickel/cobalt uptake and cobalamin biosynthesis. On the contrary, genomic islands of S. gordonii strains contain additional copies of comCDE quorum-sensing system components involved in genetic competence. Two distinct polysaccharide locus architectures were identified, one of which was exclusively present in S. gordonii strains. The first evidence of genes encoding the CylA and CylB system by the α-haemolytic S. gordonii is presented. This study provides new insights into the genetic distinctions between S. gordonii and S. sanguinis, which yields understanding of tooth surfaces colonization and contributions to dental plaque formation, as well as their potential roles in the pathogenesis of IE.