GRB7

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 64173 Experts worldwide ranked by ideXlab platform

Enwei Liang - One of the best experts on this subject based on the ideXlab platform.

  • a comprehensive analysis of fermi gamma ray burst data iii energy dependent t 90 distributions of gbm grbs and instrumental selection effect on duration classification
    The Astrophysical Journal, 2013
    Co-Authors: Enwei Liang, Yunfeng Liang, Shuangxi Yi, Binbin Zhang, Jin Zhang, Houjun Lu, Ruijing Lu, Lianzhong Lu
    Abstract:

    The durations (T90) of 315 gamma-ray bursts (GRBs) detected with Fermi/GBM (8‐1000 keV) up to 2011 September are calculated using the Bayesian Block method. We compare the T90 distributions between this sample and those derived from previous/current GRB missions. We show that the T90 distribution of this GRB sample is bimodal, with a statistical significance level comparable to those derived from the BeppoSAX/GRBM sample and theSwift/BAT sample, but lower than that derived from theCGRO/BATSE sample. The short-to-long GRB number ratio is also much lower than that derived from the BATSE sample, i.e., 1:6.5 versus 1:3. We measure T90 in several bands, i.e., 8‐15, 15‐25, 25‐50, 50‐100, 100‐350, and 350‐1000 keV, to investigate the energy-dependence effect of the bimodal T90 distribution. It is found that the bimodal feature is well observed in the 50‐100 and 100‐350 keV bands, but is only marginally acceptable in the 25‐50 keV and 350‐1000 keV bands. The hypothesis of bimodality is confidently rejected in the 8‐15 and 15‐25 keV bands. The T90 distributions in these bands are roughly consistent with those observed by missions with similar energy bands. The parameter T90 as a function of energy follows ¯ T90 ∝ E −0.20±0.02 for long GRBs. Considering the erratic X-ray and optical flares, the duration of a burst would be even longer for most GRBs. Our results, together with the observed extended emission of some short GRBs, indicate that the central engine activity timescale would be much longer than T90 for both long and short GRBs and the observed bimodal T90 distribution may be due to an instrumental selection effect.

  • a comprehensive analysis of fermi gamma ray burst data iii energy dependent t90 distributions of gbm grbs and instrumental selection effect on duration classification
    arXiv: High Energy Astrophysical Phenomena, 2012
    Co-Authors: Ying Qin, Enwei Liang, Yunfeng Liang, Binbin Zhang, Jin Zhang, Lin Lin, Bing Zhang
    Abstract:

    The durations (T90) of 315 GRBs detected with Fermi/GBM (8-1000 keV) by 2011 September are calculated using the Bayesian Block method. We compare the T90 distributions between this sample and those derived from previous/current GRB missions. We show that the T90 distribution of this GRB sample is bimodal, with a statistical significance level being comparable to those derived from the BeppoSAX/GRBM sample and the Swift/BAT sample, but lower than that derived from the CGRO/BATSE sample. The short-to-long GRB number ratio is also much lower than that derived from the BATSE sample, i.e., 1:6.5 vs 1:3. We measure T90 in several bands, i.e., 8-15, 15-25, 25-50, 50-100, 100-350, and 350-1000 keV, to investigate the energy-dependence effect of the bimodal T90 distribution. It is found that the bimodal feature is well observed in the 50-100 and 100-350 keV bands, but is only marginally acceptable in the 25-50 keV and 350-1000 keV bands. The hypothesis of the bimodality is confidently rejected in the 8-15 and 15-25 keV bands. The T90 distributions in these bands are roughly consistent with those observed by missions with similar energy bands. The parameter T90 as a function of energy follows \bar T90 \propto E^{-0.20\pm 0.02} for long GRBs. Considering the erratic X-ray and optical flares, the duration of a burst would be even much longer for most GRBs. Our results, together with the observed extended emission of some short GRBs, indicate that the central engine activity time scale would be much longer than T90} for both long and short GRBs and the observed bimodal T90 distribution may be due to an instrumental selection effect.

  • low luminosity gamma ray bursts as a unique population luminosity function local rate and beaming factor
    The Astrophysical Journal, 2007
    Co-Authors: Enwei Liang, Bing Zhang, Francisco J Virgili
    Abstract:

    Swift BAT has detected ~200 long-duration GRBs, with redshift measurements for ~50 of them. We derive the luminosity function (?HL) and the local event rate (?) of the conventional high-luminosity (HL) GRBs by using the z-known Swift GRBs. Our results are generally consistent with that derived from the CGRO BATSE data. However, the fact that Swift detected a low-luminosity (LL) GRB, GRB 060218, at z = 0.033 within ~2 years of operation, together with the previous detection of the nearby GRB 980425, suggests a much higher local rate for these LL-GRBs. We explore the possibility that LL-GRBs are a distinct GRB population from the HL-GRBs. We find that ? is ~325 Gpc-3 yr-1, which is much higher than ? (1.12 Gpc-3 yr-1). This rate is ~0.7% of the local Type Ib/c SNe. Our results, together with the finding that less than 10% of Type Ib/c SNe are associated with off-beam GRBs, suggest that LL-GRBs have a beaming factor typically less than 14, or a jet angle typically wider than 31?. The high local GRB rate, small beaming factor, and low-luminosity make the LL-GRBs distinct from the HL-GRBs. Although the current data could not fully rule out the possibility that both HL- and LL-GRBs are the same population, our results suggest that LL-GRBs are likely a unique GRB population and that the observed low-redshift GRB sample is dominated by the LL-GRBs.

Morag Park - One of the best experts on this subject based on the ideXlab platform.

  • identification of an atypical grb2 carboxyl terminal sh3 domain binding site in gab docking proteins reveals grb2 dependent and independent recruitment of gab1 to receptor tyrosine kinases
    Journal of Biological Chemistry, 2000
    Co-Authors: Lisa S Lock, Monica A. Naujokas, Isabelle Royal, Morag Park
    Abstract:

    Abstract The Gab family of docking proteins is phosphorylated in response to various growth factors and cytokines and serves to recruit multiple signaling proteins. Gab1 acts downstream from the Met-hepatocyte growth factor receptor, and Gab1 overexpression promotes Met-dependent morphogenesis of epithelial cells. Recruitment of Gab1 to Met or epidermal growth factor (EGF) receptors requires a receptor-binding site for the Grb2 adapter protein and a proline-rich domain in Gab1, defined as the Met-binding domain. To determine the requirement for Grb2 in Gab1 recruitment, we have mapped two Grb2 carboxyl-terminal SH3 domain binding sites conserved in Gab1 and related protein Gab2. One corresponds to a canonical Grb2-binding motif, whereas the second, located within the Gab1 Met-binding domain, requires the proline and arginine residues of an atypical PXXXR motif. The PXXXR motif is required but not sufficient for Grb2 binding, whereas an extended motif, PX3RX2KPX7PLD, conserved in Gab proteins as well as the Grb2/Gads-docking protein, Slp-76, efficiently competes binding of Grb2 or Gads adapter proteins. The association of Gab1 with Grb2 is required for Gab1 recruitment to the EGF receptor but not the Met receptor. Hence different mechanisms of Gab1 recruitment may reflect the distinct biological functions for Gab1 downstream from the EGF and Met receptors.

  • Identification of an atypical Grb2 carboxyl-terminal SH3 domain binding site in Gab docking proteins reveals Grb2-dependent and -independent recruitment of Gab1 to receptor tyrosine kinases.
    The Journal of biological chemistry, 2000
    Co-Authors: Lisa S Lock, Monica A. Naujokas, Isabelle Royal, Morag Park
    Abstract:

    Abstract The Gab family of docking proteins is phosphorylated in response to various growth factors and cytokines and serves to recruit multiple signaling proteins. Gab1 acts downstream from the Met-hepatocyte growth factor receptor, and Gab1 overexpression promotes Met-dependent morphogenesis of epithelial cells. Recruitment of Gab1 to Met or epidermal growth factor (EGF) receptors requires a receptor-binding site for the Grb2 adapter protein and a proline-rich domain in Gab1, defined as the Met-binding domain. To determine the requirement for Grb2 in Gab1 recruitment, we have mapped two Grb2 carboxyl-terminal SH3 domain binding sites conserved in Gab1 and related protein Gab2. One corresponds to a canonical Grb2-binding motif, whereas the second, located within the Gab1 Met-binding domain, requires the proline and arginine residues of an atypical PXXXR motif. The PXXXR motif is required but not sufficient for Grb2 binding, whereas an extended motif, PX3RX2KPX7PLD, conserved in Gab proteins as well as the Grb2/Gads-docking protein, Slp-76, efficiently competes binding of Grb2 or Gads adapter proteins. The association of Gab1 with Grb2 is required for Gab1 recruitment to the EGF receptor but not the Met receptor. Hence different mechanisms of Gab1 recruitment may reflect the distinct biological functions for Gab1 downstream from the EGF and Met receptors.

Lisa S Lock - One of the best experts on this subject based on the ideXlab platform.

  • identification of an atypical grb2 carboxyl terminal sh3 domain binding site in gab docking proteins reveals grb2 dependent and independent recruitment of gab1 to receptor tyrosine kinases
    Journal of Biological Chemistry, 2000
    Co-Authors: Lisa S Lock, Monica A. Naujokas, Isabelle Royal, Morag Park
    Abstract:

    Abstract The Gab family of docking proteins is phosphorylated in response to various growth factors and cytokines and serves to recruit multiple signaling proteins. Gab1 acts downstream from the Met-hepatocyte growth factor receptor, and Gab1 overexpression promotes Met-dependent morphogenesis of epithelial cells. Recruitment of Gab1 to Met or epidermal growth factor (EGF) receptors requires a receptor-binding site for the Grb2 adapter protein and a proline-rich domain in Gab1, defined as the Met-binding domain. To determine the requirement for Grb2 in Gab1 recruitment, we have mapped two Grb2 carboxyl-terminal SH3 domain binding sites conserved in Gab1 and related protein Gab2. One corresponds to a canonical Grb2-binding motif, whereas the second, located within the Gab1 Met-binding domain, requires the proline and arginine residues of an atypical PXXXR motif. The PXXXR motif is required but not sufficient for Grb2 binding, whereas an extended motif, PX3RX2KPX7PLD, conserved in Gab proteins as well as the Grb2/Gads-docking protein, Slp-76, efficiently competes binding of Grb2 or Gads adapter proteins. The association of Gab1 with Grb2 is required for Gab1 recruitment to the EGF receptor but not the Met receptor. Hence different mechanisms of Gab1 recruitment may reflect the distinct biological functions for Gab1 downstream from the EGF and Met receptors.

  • Identification of an atypical Grb2 carboxyl-terminal SH3 domain binding site in Gab docking proteins reveals Grb2-dependent and -independent recruitment of Gab1 to receptor tyrosine kinases.
    The Journal of biological chemistry, 2000
    Co-Authors: Lisa S Lock, Monica A. Naujokas, Isabelle Royal, Morag Park
    Abstract:

    Abstract The Gab family of docking proteins is phosphorylated in response to various growth factors and cytokines and serves to recruit multiple signaling proteins. Gab1 acts downstream from the Met-hepatocyte growth factor receptor, and Gab1 overexpression promotes Met-dependent morphogenesis of epithelial cells. Recruitment of Gab1 to Met or epidermal growth factor (EGF) receptors requires a receptor-binding site for the Grb2 adapter protein and a proline-rich domain in Gab1, defined as the Met-binding domain. To determine the requirement for Grb2 in Gab1 recruitment, we have mapped two Grb2 carboxyl-terminal SH3 domain binding sites conserved in Gab1 and related protein Gab2. One corresponds to a canonical Grb2-binding motif, whereas the second, located within the Gab1 Met-binding domain, requires the proline and arginine residues of an atypical PXXXR motif. The PXXXR motif is required but not sufficient for Grb2 binding, whereas an extended motif, PX3RX2KPX7PLD, conserved in Gab proteins as well as the Grb2/Gads-docking protein, Slp-76, efficiently competes binding of Grb2 or Gads adapter proteins. The association of Gab1 with Grb2 is required for Gab1 recruitment to the EGF receptor but not the Met receptor. Hence different mechanisms of Gab1 recruitment may reflect the distinct biological functions for Gab1 downstream from the EGF and Met receptors.

Bing Zhang - One of the best experts on this subject based on the ideXlab platform.

  • a comprehensive analysis of fermi gamma ray burst data iii energy dependent t90 distributions of gbm grbs and instrumental selection effect on duration classification
    arXiv: High Energy Astrophysical Phenomena, 2012
    Co-Authors: Ying Qin, Enwei Liang, Yunfeng Liang, Binbin Zhang, Jin Zhang, Lin Lin, Bing Zhang
    Abstract:

    The durations (T90) of 315 GRBs detected with Fermi/GBM (8-1000 keV) by 2011 September are calculated using the Bayesian Block method. We compare the T90 distributions between this sample and those derived from previous/current GRB missions. We show that the T90 distribution of this GRB sample is bimodal, with a statistical significance level being comparable to those derived from the BeppoSAX/GRBM sample and the Swift/BAT sample, but lower than that derived from the CGRO/BATSE sample. The short-to-long GRB number ratio is also much lower than that derived from the BATSE sample, i.e., 1:6.5 vs 1:3. We measure T90 in several bands, i.e., 8-15, 15-25, 25-50, 50-100, 100-350, and 350-1000 keV, to investigate the energy-dependence effect of the bimodal T90 distribution. It is found that the bimodal feature is well observed in the 50-100 and 100-350 keV bands, but is only marginally acceptable in the 25-50 keV and 350-1000 keV bands. The hypothesis of the bimodality is confidently rejected in the 8-15 and 15-25 keV bands. The T90 distributions in these bands are roughly consistent with those observed by missions with similar energy bands. The parameter T90 as a function of energy follows \bar T90 \propto E^{-0.20\pm 0.02} for long GRBs. Considering the erratic X-ray and optical flares, the duration of a burst would be even much longer for most GRBs. Our results, together with the observed extended emission of some short GRBs, indicate that the central engine activity time scale would be much longer than T90} for both long and short GRBs and the observed bimodal T90 distribution may be due to an instrumental selection effect.

  • are all short hard gamma ray bursts produced from mergers of compact stellar objects
    The Astrophysical Journal, 2011
    Co-Authors: Francisco J Virgili, Bing Zhang, P T Obrien, E Troja
    Abstract:

    The origin and progenitors of short-hard gamma-ray bursts (GRBs) remain a puzzle and a highly debated topic. Recent Swift observations suggest that these GRBs may be related to catastrophic explosions in degenerate compact stars, denoted as "Type I" GRBs. The most popular models include the merger of two compact stellar objects (NS-NS or NS-BH). We utilize a Monte Carlo approach to determine whether a merger progenitor model can self-consistently account for all the observations of short-hard GRBs, including a sample with redshift measurements in the Swift era (z-known sample) and the CGRO/BATSE sample. We apply various merger time delay distributions invoked in compact star merger models to derive the redshift distributions of these Type I GRBs, and then constrain the unknown luminosity function of Type I GRBs using the observed luminosity-redshift (L-z) distributions of the z-known sample. The best luminosity function model, together with the adopted merger delay model, is then applied to confront the peak flux distribution (log N-log P distribution) of the BATSE and Swift samples. We find that for all the merger models invoking a range of merger delay timescales (including those invoking a large fraction of "prompt mergers"), it is difficult to reconcile the models with all the data. The data are instead statistically consistent with the following two possible scenarios. First, that short/hard GRBs are a superposition of compact-star-merger-origin (Type I) GRBs and a population of GRBs that track the star formation history, which are probably related to the deaths of massive stars (Type II GRBs). Second, the entire short/hard GRB population is consistent with a typical delay of 2 Gyr with respect to the star formation history with modest scatter. This may point toward a different Type I progenitor than the traditional compact star merger models.

  • low luminosity gamma ray bursts as a unique population luminosity function local rate and beaming factor
    The Astrophysical Journal, 2007
    Co-Authors: Enwei Liang, Bing Zhang, Francisco J Virgili
    Abstract:

    Swift BAT has detected ~200 long-duration GRBs, with redshift measurements for ~50 of them. We derive the luminosity function (?HL) and the local event rate (?) of the conventional high-luminosity (HL) GRBs by using the z-known Swift GRBs. Our results are generally consistent with that derived from the CGRO BATSE data. However, the fact that Swift detected a low-luminosity (LL) GRB, GRB 060218, at z = 0.033 within ~2 years of operation, together with the previous detection of the nearby GRB 980425, suggests a much higher local rate for these LL-GRBs. We explore the possibility that LL-GRBs are a distinct GRB population from the HL-GRBs. We find that ? is ~325 Gpc-3 yr-1, which is much higher than ? (1.12 Gpc-3 yr-1). This rate is ~0.7% of the local Type Ib/c SNe. Our results, together with the finding that less than 10% of Type Ib/c SNe are associated with off-beam GRBs, suggest that LL-GRBs have a beaming factor typically less than 14, or a jet angle typically wider than 31?. The high local GRB rate, small beaming factor, and low-luminosity make the LL-GRBs distinct from the HL-GRBs. Although the current data could not fully rule out the possibility that both HL- and LL-GRBs are the same population, our results suggest that LL-GRBs are likely a unique GRB population and that the observed low-redshift GRB sample is dominated by the LL-GRBs.

Edo Berger - One of the best experts on this subject based on the ideXlab platform.

  • the environments of short duration gamma ray bursts and implications for their progenitors
    New Astronomy Reviews, 2011
    Co-Authors: Edo Berger
    Abstract:

    Abstract The study of short-duration gamma-ray bursts (GRBs) experienced a complete revolution in recent years thanks to the discovery of the first afterglows and host galaxies starting in May 2005. These observations demonstrated that short GRBs are cosmological in origin, reside in both star forming and elliptical galaxies, are not associated with supernovae, and span a wide isotropic-equivalent energy range of ∼1048–1052 erg. However, a fundamental question remains unanswered: What are the progenitors of short GRBs? The most popular theoretical model invokes the coalescence of compact object binaries with neutron star and/or black hole constituents. However, additional possibilities exist, including magnetars formed through prompt channels (massive star core-collapse) and delayed channels (binary white dwarf mergers, white dwarf accretion-induced collapse), or accretion-induced collapse of neutron stars. In this review I summarize our current knowledge of the galactic and sub-galactic environments of short GRBs, and use these observations to draw inferences about the progenitor population. The most crucial results are: (i) some short GRBs explode in dead elliptical galaxies; (ii) the majority of short GRBs occur in star forming galaxies; (iii) the star forming hosts of short GRBs are distinct from those of long GRBs, and instead appear to be drawn from the general field galaxy population; (iv) the physical offsets of short GRBs relative to their host galaxy centers are significantly larger than for long GRBs; (v) there is tentative evidence for large offsets from short GRBs with optical afterglows and no coincident hosts; (vi) the observed offset distribution is in good agreement with predictions for NS–NS binary mergers; and (vii) short GRBs trace under-luminous locations within their hosts, but appear to be more closely correlated with the rest-frame optical light (old stars) than the UV light (young massive stars). Taken together, these observations suggest that short GRB progenitors belong to an old stellar population with a wide age distribution, and generally track stellar mass. These results are fully consistent with NS–NS binary mergers and rule out a dominant population of prompt magnetars. However, a partial contribution from delayed magnetar formation or accretion-induced collapse is also consistent with the data.

  • a short grb no host problem investigating large progenitor offsets for short grbs with optical afterglows
    arXiv: High Energy Astrophysical Phenomena, 2010
    Co-Authors: Edo Berger
    Abstract:

    [abridged] We investigate the afterglow properties and large-scale environments of several short-duration gamma-ray bursts (GRBs) with sub-arcsecond optical afterglow positions but no bright coincident host galaxies. The purpose of this joint study is to robustly assess the possibility of significant offsets, a hallmark of the compact object binary merger model. Five such events exist in the current sample of 20 short bursts with optical afterglows, and we find that their optical, X-ray, and gamma-ray emission are systematically fainter. These differences may be due to lower circumburst densities (by about an order of magnitude), to higher redshifts (by dz~0.5-1), or to lower energies, although in the standard GRB model the smaller gamma-ray fluences cannot be explained by lower densities. To study the large-scale environments we use deep optical observations to place limits on underlying hosts and to determine probabilities of chance coincidence for galaxies near each burst. In 4 of the 5 cases the lowest probabilities of chance coincidence (P( 1 leads to offsets of ~15 kpc. Alternatively, the limits at the burst positions (>26 mag) can be explained by typical short GRB host galaxies (L~0.1-1 L*) at z>2. Thus, two possibilities exist: (i) ~1/4 of short GRBs explode ~50 kpc or ~15 kpc from the centers of z~0.3 or z>1 galaxies, respectively, and have fainter afterglows due to the resulting lower densities; or (ii) ~1/4 of short GRBs occur at z>2 and have fainter afterglows due to their higher redshifts.

  • the environments of short duration gamma ray bursts and implications for their progenitors
    arXiv: High Energy Astrophysical Phenomena, 2010
    Co-Authors: Edo Berger
    Abstract:

    [Abridged] The study of short-duration gamma-ray bursts (GRBs) experienced a complete revolution in recent years thanks to the discovery of the first afterglows and host galaxies in May 2005. These observations demonstrated that short GRBs are cosmological in origin, reside in both star forming and elliptical galaxies, are not associated with supernovae, and span a wide isotropic-equivalent energy range of ~10^48-10^52 erg. However, a fundamental question remains unanswered: What are the progenitors of short GRBs? The most popular theoretical model invokes the coalescence of compact object binaries with neutron star and/or black hole constituents. However, additional possibilities exist, including magnetars formed through prompt channels (massive star core-collapse) and delayed channels (binary white dwarf mergers, white dwarf accretion-induced collapse), or accretion-induced collapse of neutron stars. In this review I summarize our current knowledge of the galactic and sub-galactic environments of short GRBs, and use these observations to draw inferences about the progenitor population. The most crucial results are: (i) some short GRBs explode in dead elliptical galaxies; (ii) the majority of short GRBs occur in star forming galaxies; (iii) the star forming hosts of short GRBs are distinct from those of long GRBs (lower star formation rates, and higher luminosities and metallicities), and instead appear to be drawn from the general field galaxy population; (iv) the physical offsets of short GRBs relative to their host galaxy centers are significantly larger than for long GRBs; (v) the observed offset distribution is in good agreement with predictions for NS-NS binary mergers; and (vi) short GRBs trace under-luminous locations within their hosts, but appear to be more closely correlated with the rest-frame optical light (old stars) than the UV light (young massive stars).