Greenwich Meridian

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 4476 Experts worldwide ranked by ideXlab platform

Olaf Boebel - One of the best experts on this subject based on the ideXlab platform.

  • The influence of sea ice, wind speed and marine mammals on Southern Ocean ambient sound
    Royal Society Open Science, 2017
    Co-Authors: Sebastian Menze, Ilse Van Opzeeland, Daniel P Zitterbart, Olaf Boebel
    Abstract:

    This paper describes the natural variability of ambient sound in the Southern Ocean, an acoustically pristine marine mammal habitat. Over a 3-year period, two autonomous recorders were moored along the Greenwich Meridian to collect underwater passive acoustic data. Ambient sound levels were strongly affected by the annual variation of the sea-ice cover, which decouples local wind speed and sound levels during austral winter. With increasing sea-ice concentration, area and thickness, sound levels decreased while the contribution of distant sources increased. Marine mammal sounds formed a substantial part of the overall acoustic environment, comprising calls produced by Antarctic blue whales (Balaenoptera musculus intermedia), fin whales (Balaenoptera physalus), Antarctic minke whales (Balaenoptera bonaerensis) and leopard seals (Hydrurga leptonyx). The combined sound energy of a group or population vocalizing during extended periods contributed species-specific peaks to the ambient sound spectra. The temporal and spatial variation in the contribution of marine mammals to ambient sound suggests annual patterns in migration and behaviour. The Antarctic blue and fin whale contributions were loudest in austral autumn, whereas the Antarctic minke whale contribution was loudest during austral winter and repeatedly showed a diel pattern that coincided with the diel vertical migration of zooplankton.

  • Spatio-temporal patterns in Antarctic minke whale (Balaenoptera bonaerensis) vocal behaviour in the Weddell Sea
    2016
    Co-Authors: Diego Filun, Olaf Boebel, Karolin Thomisch, Elke Burkhardt, Michael Flau, Stefanie Spiesecke, Victoria Warren, Ilse Van Opzeeland
    Abstract:

    Antarctic minke whales (Baleanoptera bonaerensis) occur in open as well as ice-covered waters throughout the Southern Ocean. Their low visual detectability and ice-associated habitat makes the species difficult to study using traditional visual methods. The recent identification of vocalizations produced by Antarctic minke whales now allows the use of passive acoustic records to investigate spatio-temporal patterns in occurrence, also in areas that are (seasonally) inaccessible to ships due to extensive ice cover. Here we present preliminary results on Antarctic minke whale occurrence patterns based on part of a multi-year passive acoustic data set collected from 6 locations throughout the Atlantic sector of the Southern Ocean. These comprised four autonomous passive acoustic recorders which collected data along the Greenwich Meridian between 2008 and 2011, one passive acoustic recorder in the Weddell Sea that collected data between 2010 and 2012 and long-term recordings from the PALAOA observatory on the Eckstrom Iceshelf off the Antarctic continent (2006-2016). Analyses were based on daily presence of Antarctic minke whale pulse trains, also referred to as the bio-duck call. The bio-duck signal is characterized by its repetitive nature, consisting of regular down-sweeped pulses, with most energy located in the 50-300 Hz band. Antarctic minke whales were present at all six Antarctic recording locations from June to December, with highest presence occurring between August and November (>80% of days with bioduck calls present). At the southernmost recording locations and the location in the Weddell Sea, the bioduck call was present throughout nine and ten months of the year, respectively. Substantial variation in the seasonal on- and offset period of vocal activity of Antarctic minke whales was observed between years at the different recording positions, possibly corresponding to variation in local ice conditions. Ongoing work aims to further quantify this relationship to better understand year-round Antarctic minke whale habitat preferences. Furthermore, further work will comprise more fine-scale analyses to unravel diel patterns in vocal activity and explore if variation in the acoustic signature of the bioduck call can potentially be attributed to regional differences in Antarctic minke whale vocal behavior, possibly representing subpopulations of the species.

  • Spatio-temporal patterns in acoustic presence and distribution of Antarctic blue whales Balaenoptera musculus intermedia in the Weddell Sea
    Endangered Species Research, 2016
    Co-Authors: Karolin Thomisch, Olaf Boebel, Daniel P Zitterbart, Stefanie Spiesecke, Christopher W. Clark, Wilhelm Hagen, Ilse Van Opzeeland
    Abstract:

    Distribution and movement patterns of Antarctic blue whales Balaenoptera musculus intermedia at large temporal and spatial scales are still poorly understood. The objective of this study was to explore spatio-temporal distribution patterns of Antarctic blue whales in the Atlantic sector of the Southern Ocean, using passive acoustic monitoring data. Multi-year data were collected between 2008 and 2013 by 11 recorders deployed in the Weddell Sea and along the Greenwich Meridian. Antarctic blue whale Z-calls were detected via spectrogram cross-correlation. A Blue Whale Index was developed to quantify the proportion of time during which acoustic energy from Antarctic blue whales dominated over background noise. Our results show that Antarctic blue whales were acoustically present year-round, with most call detections between January and April. During austral summer, the number of detected calls peaked synchronously throughout the study area in most years, and hence, no directed meridional movement pattern was detectable. During austral winter, vocalizations were recorded at latitudes as high as 69°S, with sea ice cover exceeding 90%, suggesting that some Antarctic blue whales overwinter in Antarctic waters. Polynyas likely serve as an important habitat for baleen whales during austral winter, providing food and reliable access to open water for breathing. Overall, our results support increasing evidence of a complex and non-obligatory migratory behavior of Antarctic blue whales, potentially involving temporally and spatially dynamic migration routes and destinations, as well as variable timing of migration to and from the feeding grounds.

  • We added a Pdf document with the supplementary Figures and captions from The influence of sea ice, wind speed and marine mammals on Southern Ocean ambient sound
    2016
    Co-Authors: Sebastian Menze, Ilse Van Opzeeland, Daniel P Zitterbart, Olaf Boebel
    Abstract:

    This paper describes the natural variability of ambient sound in the Southern Ocean, an acoustically pristine marine mammal habitat. Over a 3-year period, two autonomous recorders were moored along the Greenwich Meridian to collect underwater passive acoustic data. Ambient sound levels were strongly affected by the annual variation of the sea-ice cover, which decouples local wind speed and sound levels during austral winter. With increasing sea-ice concentration, area and thickness, sound levels decreased while the contribution of distant sources increased. Marine mammal sounds formed a substantial part of the overall acoustic environment, comprising calls produced by Antarctic blue whales (Balaenoptera musculus intermedia), fin whales (Balaenoptera physalus), Antarctic minke whales (Balaenoptera bonaerensis) and leopard seals (Hydrurga leptonyx). The combined sound energy of a group or population vocalizing during extended periods contributed species-specific peaks to the ambient sound spectra. The temporal and spatial variation in the contribution of marine mammals to ambient sound suggests annual patterns in migration and behaviour. The Antarctic blue and fin whale contributions were loudest in austral autumn, whereas the Antarctic minke whale contribution was loudest during austral winter and repeatedly showed a diel pattern that coincided with the diel vertical migration of zooplankton

  • variations of winter water properties and sea ice along the Greenwich Meridian on decadal time scales
    Deep-sea Research Part Ii-topical Studies in Oceanography, 2011
    Co-Authors: Axel Behrendt, Olaf Boebel, Olaf Klatt, Mario Hoppema, Eberhard Fahrbach, Gerd Rohardt, Andreas Wisotzki, Hannelore Witte
    Abstract:

    Abstract Sea–ice ocean interaction processes are of significant influence on the water mass formation in the Weddell gyre. On the basis of data obtained between 1984 and 2008 from eight repeat hydrographic sections, moored instruments and profiling floats in the Weddell gyre on the Greenwich Meridian – almost all of them collected with R.V. Polarstern – we identified variations in the properties of the Winter Water and the sea ice draft. In the Winter Water the salinity was relatively low throughout the 1990s (with a minimum in 1992) and a maximum was observed in 2003. Observations of sea ice draft by moored upward looking sonars are available from 1996 onwards. In the southern part of the transect they display variations on a decadal time scale with a minimum in sea-ice thickness in 1998 and an increase since then. Salinity variations in the Winter Water layer cannot be explained only by variations in sea-ice formation and variable entrainment of underlying Warm Deep Water, but lateral advection of water and sea ice needs to be taken into account as well. Potential sources are melt water from the ice shelves in the western Weddell Sea or transport of water of low salinity entering the Weddell gyre from the east. Accompanying variations of the properties of Warm Deep Water are discussed in detail in a companion paper ( Fahrbach et al., 2011 ).

Ilse Van Opzeeland - One of the best experts on this subject based on the ideXlab platform.

  • The influence of sea ice, wind speed and marine mammals on Southern Ocean ambient sound
    Royal Society Open Science, 2017
    Co-Authors: Sebastian Menze, Ilse Van Opzeeland, Daniel P Zitterbart, Olaf Boebel
    Abstract:

    This paper describes the natural variability of ambient sound in the Southern Ocean, an acoustically pristine marine mammal habitat. Over a 3-year period, two autonomous recorders were moored along the Greenwich Meridian to collect underwater passive acoustic data. Ambient sound levels were strongly affected by the annual variation of the sea-ice cover, which decouples local wind speed and sound levels during austral winter. With increasing sea-ice concentration, area and thickness, sound levels decreased while the contribution of distant sources increased. Marine mammal sounds formed a substantial part of the overall acoustic environment, comprising calls produced by Antarctic blue whales (Balaenoptera musculus intermedia), fin whales (Balaenoptera physalus), Antarctic minke whales (Balaenoptera bonaerensis) and leopard seals (Hydrurga leptonyx). The combined sound energy of a group or population vocalizing during extended periods contributed species-specific peaks to the ambient sound spectra. The temporal and spatial variation in the contribution of marine mammals to ambient sound suggests annual patterns in migration and behaviour. The Antarctic blue and fin whale contributions were loudest in austral autumn, whereas the Antarctic minke whale contribution was loudest during austral winter and repeatedly showed a diel pattern that coincided with the diel vertical migration of zooplankton.

  • Spatio-temporal patterns in Antarctic minke whale (Balaenoptera bonaerensis) vocal behaviour in the Weddell Sea
    2016
    Co-Authors: Diego Filun, Olaf Boebel, Karolin Thomisch, Elke Burkhardt, Michael Flau, Stefanie Spiesecke, Victoria Warren, Ilse Van Opzeeland
    Abstract:

    Antarctic minke whales (Baleanoptera bonaerensis) occur in open as well as ice-covered waters throughout the Southern Ocean. Their low visual detectability and ice-associated habitat makes the species difficult to study using traditional visual methods. The recent identification of vocalizations produced by Antarctic minke whales now allows the use of passive acoustic records to investigate spatio-temporal patterns in occurrence, also in areas that are (seasonally) inaccessible to ships due to extensive ice cover. Here we present preliminary results on Antarctic minke whale occurrence patterns based on part of a multi-year passive acoustic data set collected from 6 locations throughout the Atlantic sector of the Southern Ocean. These comprised four autonomous passive acoustic recorders which collected data along the Greenwich Meridian between 2008 and 2011, one passive acoustic recorder in the Weddell Sea that collected data between 2010 and 2012 and long-term recordings from the PALAOA observatory on the Eckstrom Iceshelf off the Antarctic continent (2006-2016). Analyses were based on daily presence of Antarctic minke whale pulse trains, also referred to as the bio-duck call. The bio-duck signal is characterized by its repetitive nature, consisting of regular down-sweeped pulses, with most energy located in the 50-300 Hz band. Antarctic minke whales were present at all six Antarctic recording locations from June to December, with highest presence occurring between August and November (>80% of days with bioduck calls present). At the southernmost recording locations and the location in the Weddell Sea, the bioduck call was present throughout nine and ten months of the year, respectively. Substantial variation in the seasonal on- and offset period of vocal activity of Antarctic minke whales was observed between years at the different recording positions, possibly corresponding to variation in local ice conditions. Ongoing work aims to further quantify this relationship to better understand year-round Antarctic minke whale habitat preferences. Furthermore, further work will comprise more fine-scale analyses to unravel diel patterns in vocal activity and explore if variation in the acoustic signature of the bioduck call can potentially be attributed to regional differences in Antarctic minke whale vocal behavior, possibly representing subpopulations of the species.

  • Spatio-temporal patterns in acoustic presence and distribution of Antarctic blue whales Balaenoptera musculus intermedia in the Weddell Sea
    Endangered Species Research, 2016
    Co-Authors: Karolin Thomisch, Olaf Boebel, Daniel P Zitterbart, Stefanie Spiesecke, Christopher W. Clark, Wilhelm Hagen, Ilse Van Opzeeland
    Abstract:

    Distribution and movement patterns of Antarctic blue whales Balaenoptera musculus intermedia at large temporal and spatial scales are still poorly understood. The objective of this study was to explore spatio-temporal distribution patterns of Antarctic blue whales in the Atlantic sector of the Southern Ocean, using passive acoustic monitoring data. Multi-year data were collected between 2008 and 2013 by 11 recorders deployed in the Weddell Sea and along the Greenwich Meridian. Antarctic blue whale Z-calls were detected via spectrogram cross-correlation. A Blue Whale Index was developed to quantify the proportion of time during which acoustic energy from Antarctic blue whales dominated over background noise. Our results show that Antarctic blue whales were acoustically present year-round, with most call detections between January and April. During austral summer, the number of detected calls peaked synchronously throughout the study area in most years, and hence, no directed meridional movement pattern was detectable. During austral winter, vocalizations were recorded at latitudes as high as 69°S, with sea ice cover exceeding 90%, suggesting that some Antarctic blue whales overwinter in Antarctic waters. Polynyas likely serve as an important habitat for baleen whales during austral winter, providing food and reliable access to open water for breathing. Overall, our results support increasing evidence of a complex and non-obligatory migratory behavior of Antarctic blue whales, potentially involving temporally and spatially dynamic migration routes and destinations, as well as variable timing of migration to and from the feeding grounds.

  • We added a Pdf document with the supplementary Figures and captions from The influence of sea ice, wind speed and marine mammals on Southern Ocean ambient sound
    2016
    Co-Authors: Sebastian Menze, Ilse Van Opzeeland, Daniel P Zitterbart, Olaf Boebel
    Abstract:

    This paper describes the natural variability of ambient sound in the Southern Ocean, an acoustically pristine marine mammal habitat. Over a 3-year period, two autonomous recorders were moored along the Greenwich Meridian to collect underwater passive acoustic data. Ambient sound levels were strongly affected by the annual variation of the sea-ice cover, which decouples local wind speed and sound levels during austral winter. With increasing sea-ice concentration, area and thickness, sound levels decreased while the contribution of distant sources increased. Marine mammal sounds formed a substantial part of the overall acoustic environment, comprising calls produced by Antarctic blue whales (Balaenoptera musculus intermedia), fin whales (Balaenoptera physalus), Antarctic minke whales (Balaenoptera bonaerensis) and leopard seals (Hydrurga leptonyx). The combined sound energy of a group or population vocalizing during extended periods contributed species-specific peaks to the ambient sound spectra. The temporal and spatial variation in the contribution of marine mammals to ambient sound suggests annual patterns in migration and behaviour. The Antarctic blue and fin whale contributions were loudest in austral autumn, whereas the Antarctic minke whale contribution was loudest during austral winter and repeatedly showed a diel pattern that coincided with the diel vertical migration of zooplankton

Boebel Olaf - One of the best experts on this subject based on the ideXlab platform.

  • The influence of sea ice, wind speed and marine mammals on Southern Ocean ambient sound
    'The Royal Society', 2017
    Co-Authors: Menze Sebastian, Van Opzeeland Ilse, Zitterbart, Daniel P., Boebel Olaf
    Abstract:

    This paper describes the natural variability of ambient sound in the Southern Ocean, an acoustically pristine marine mammal habitat. Over a 3-year period, two autonomous recorders were moored along the Greenwich Meridian to collect underwater passive acoustic data. Ambient sound levels were strongly affected by the annual variation of the sea-ice cover, which decouples local wind speed and sound levels during austral winter. With increasing sea-ice concentration, area and thickness, sound levels decreased while the contribution of distant sources increased. Marine mammal sounds formed a substantial part of the overall acoustic environment, comprising calls produced by Antarctic blue whales (Balaenoptera musculus intermedia), fin whales (Balaenoptera physalus), Antarctic minke whales (Balaenoptera bonaerensis) and leopard seals (Hydrurga leptonyx). The combined sound energy of a group or population vocalizing during extended periods contributed species-specific peaks to the ambient sound spectra. The temporal and spatial variation in the contribution of marine mammals to ambient sound suggests annual patterns in migration and behaviour. The Antarctic blue and fin whale contributions were loudest in austral autumn, whereas the Antarctic minke whale contribution was loudest during austral winter and repeatedly showed a diel pattern that coincided with the diel vertical migration of zooplankton.publishedVersio

  • Data from: The influence of sea ice, wind speed and marine mammals on Southern Ocean ambient sound
    2017
    Co-Authors: Menze Sebastian, Van Opzeeland Ilse, Zitterbart, Daniel P., Boebel Olaf
    Abstract:

    This paper describes the natural variability of ambient sound in the Southern Ocean, an acoustically pristine marine mammal habitat. Over a 3-year period, two autonomous recorders were moored along the Greenwich Meridian to collect underwater passive acoustic data. Ambient sound levels were strongly affected by the annual variation of the sea-ice cover, which decouples local wind speed and sound levels during austral winter. With increasing sea-ice concentration, area and thickness, sound levels decreased while the contribution of distant sources increased. Marine mammal sounds formed a substantial part of the overall acoustic environment, comprising calls produced by Antarctic blue whales (Balaenoptera musculus intermedia), fin whales (Balaenoptera physalus), Antarctic minke whales (Balaenoptera bonaerensis) and leopard seals (Hydrurga leptonyx). The combined sound energy of a group or population vocalizing during extended periods contributed species-specific peaks to the ambient sound spectra. The temporal and spatial variation in the contribution of marine mammals to ambient sound suggests annual patterns in migration and behaviour. The Antarctic blue and fin whale contributions were loudest in austral autumn, whereas the Antarctic minke whale contribution was loudest during austral winter and repeatedly showed a diel pattern that coincided with the diel vertical migration of zooplankton

  • The influence of sea ice, wind speed and marine mammals on Southern Ocean ambient sound
    'The Royal Society', 2017
    Co-Authors: Menze Sebastian, Van Opzeeland Ilse, Zitterbart Daniel, Boebel Olaf
    Abstract:

    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Royal Society Open Science 4 (2017): 160370, doi:10.1098/rsos.160370.This paper describes the natural variability of ambient sound in the Southern Ocean, an acoustically pristine marine mammal habitat. Over a 3-year period, two autonomous recorders were moored along the Greenwich Meridian to collect underwater passive acoustic data. Ambient sound levels were strongly affected by the annual variation of the sea-ice cover, which decouples local wind speed and sound levels during austral winter. With increasing sea-ice concentration, area and thickness, sound levels decreased while the contribution of distant sources increased. Marine mammal sounds formed a substantial part of the overall acoustic environment, comprising calls produced by Antarctic blue whales (Balaenoptera musculus intermedia), fin whales (Balaenoptera physalus), Antarctic minke whales (Balaenoptera bonaerensis) and leopard seals (Hydrurga leptonyx). The combined sound energy of a group or population vocalizing during extended periods contributed species-specific peaks to the ambient sound spectra. The temporal and spatial variation in the contribution of marine mammals to ambient sound suggests annual patterns in migration and behaviour. The Antarctic blue and fin whale contributions were loudest in austral autumn, whereas the Antarctic minke whale contribution was loudest during austral winter and repeatedly showed a diel pattern that coincided with the diel vertical migration of zooplankton

  • Spatio-temporal patterns in acoustic presence and distribution of Antarctic blue whales Balaenoptera musculus intermedia in the Weddell Sea
    'Inter-Research Science Center', 2016
    Co-Authors: Thomisch Karolin, Boebel Olaf, Zitterbart Daniel, Clark, Christopher W., Hagen Wilhelm, Spiesecke Stefanie, Van Opzeeland Ilse
    Abstract:

    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Endangered Species Research 30 (2016): 239-253, doi:10.3354/esr00739.Distribution and movement patterns of Antarctic blue whales Balaenoptera musculus intermedia at large temporal and spatial scales are still poorly understood. The objective of this study was to explore spatio-temporal distribution patterns of Antarctic blue whales in the Atlantic sector of the Southern Ocean, using passive acoustic monitoring data. Multi-year data were collected between 2008 and 2013 by 11 recorders deployed in the Weddell Sea and along the Greenwich Meridian. Antarctic blue whale Z-calls were detected via spectrogram cross-correlation. A Blue Whale Index was developed to quantify the proportion of time during which acoustic energy from Antarctic blue whales dominated over background noise. Our results show that Antarctic blue whales were acoustically present year-round, with most call detections between January and April. During austral summer, the number of detected calls peaked synchronously throughout the study area in most years, and hence, no directed meridional movement pattern was detectable. During austral winter, vocalizations were recorded at latitudes as high as 69°S, with sea ice cover exceeding 90%, suggesting that some Antarctic blue whales overwinter in Antarctic waters. Polynyas likely serve as an important habitat for baleen whales during austral winter, providing food and reliable access to open water for breathing. Overall, our results support increasing evidence of a complex and non-obligatory migratory behavior of Antarctic blue whales, potentially involving temporally and spatially dynamic migration routes and destinations, as well as variable timing of migration to and from the feeding grounds

  • LOCAL TO BASIN SCALE ARRAYS FOR PASSIVE ACOUSTIC MONITORING IN THE ATLANTIC SECTOR OF THE SOUTHERN OCEAN
    2013
    Co-Authors: Rettig Stefanie, Thomisch Karolin, Boebel Olaf, Menze Sebastian, Kindermann Lars, Van Opzeeland Ilse
    Abstract:

    Passive acoustic data provide a prime source of information on marine mammal distribution and behaviour. Particularly in the Southern Ocean, where ship-based data collection can be severely hampered by weather and ice conditions, passive acoustic monitoring (PAM) of marine mammals forms an important source of year-round information on acoustic presence. Array data can be used to obtain directional information on the species present in the recordings to derive movement patterns. Acoustic arrays furthermore allow spatial comparisons of marine mammal distribution patterns and habitat affinities when the acoustic presence information is linked to local environmental parameters. Here we present two passive acoustic monitoring arrays that have been implemented by the Alfred Wegener Institute’s Ocean Acoustic Lab and serve the investigation of marine mammals on different spatial scales. During the austral summer season 2012/2013 a local scale array of sea ice-based time-synchronized passive acoustic recorders was deployed in Atka Bay, Antarctica. The PASATA (PASsive Acoustic Tracking of Antarctic marine mammals) project investigates coastal local habitat usage and communication ranges of marine mammals by integrating positional information from triangulation of calling animals and information from environmental parameters. For studies on marine mammals over larger spatial scales, 23 passive acoustic recorders were deployed in oceanographic moorings in the Southern Ocean, reaching from the Greenwich Meridian throughout the Weddell Sea to the Western Antarctic Peninsula. The inter-disciplinary nature of this mooring array allows combining in-situ oceanographic measurements with passive acoustic data on marine mammal occurrence. It furthermore forms the first basin-wide, long term array, at least in the Southern Ocean. Here, we describe both arrays, the recorder types used, and technical and logistic requirements for PAM in a polar environment

Keith W Nicholls - One of the best experts on this subject based on the ideXlab platform.

  • Ice-shelf – ocean interactions at Fimbul Ice Shelf, Antarctica from oxygen isotope ratio measurements
    Copernicus Publications, 2008
    Co-Authors: Keith W Nicholls, Karen J. Heywood, M R Price
    Abstract:

    Melt water from the floating ice shelves at the margins of the southeastern Weddell Sea makes a significant contribution to the fresh water budget of the region. In February 2005 a multi-institution team conducted an oceanographic campaign at Fimbul Ice Shelf on the Greenwich Meridian as part of the Autosub Under Ice programme. This included a mission of the autonomous submarine Autosub 25 km into the cavity beneath Fimbul Ice Shelf, and a number of ship-based hydrographic sections on the continental shelf and adjacent to the ice shelf front. The measurements reveal two significant sources of glacial melt water at Fimbul Ice Shelf: the main cavity under the ice shelf and an ice tongue, Trolltunga, that protrudes from the main ice front and out over the continental slope into deep water. Glacial melt water is concentrated in a 200 m thick Ice Shelf Water (ISW) layer below the base of the ice shelf at 150–200 m, with a maximum glacial melt concentration of up to 1.16%. Some glacial melt is found throughout the water column, and much of this is from sources other than Fimbul Ice Shelf. However, at least 0.2% of the water in the ISW layer cannot be accounted for by other processes and must have been contributed by the ice shelf. Just downstream of Fimbul Ice Shelf we observe locally created ISW mixing out across the continental slope. The ISW formed here is much less dense than that formed in the southwest Weddell Sea, and will ultimately contribute a freshening (and reduction in δ18O) to the upper 100–150 m of the water column in the southeast Weddell Sea

  • ice shelf ocean interactions at fimbul ice shelf antarctica from oxygen isotope ratio measurements
    Ocean Science, 2007
    Co-Authors: M R Price, Karen J. Heywood, Keith W Nicholls
    Abstract:

    Abstract. Melt water from the floating ice shelves at the margins of the southeastern Weddell Sea makes a significant contribution to the fresh water budget of the region. In February 2005 a multi-institution team conducted an oceanographic campaign at Fimbul Ice Shelf on the Greenwich Meridian as part of the Autosub Under Ice programme. This included a mission of the autonomous submarine Autosub 25 km into the cavity beneath Fimbul Ice Shelf, and a number of ship-based hydrographic sections on the continental shelf and adjacent to the ice shelf front. The measurements reveal two significant sources of glacial melt water at Fimbul Ice Shelf: the main cavity under the ice shelf and an ice tongue, Trolltunga, that protrudes from the main ice front and out over the continental slope into deep water. Glacial melt water is concentrated in a 200 m thick Ice Shelf Water (ISW) layer below the base of the ice shelf at 150–200 m, with a maximum glacial melt concentration of up to 1.16%. Some glacial melt is found throughout the water column, and much of this is from sources other than Fimbul Ice Shelf. However, at least 0.2% of the water in the ISW layer cannot be accounted for by other processes and must have been contributed by the ice shelf. Just downstream of Fimbul Ice Shelf we observe locally created ISW mixing out across the continental slope. The ISW formed here is much less dense than that formed in the southwest Weddell Sea, and will ultimately contribute a freshening (and reduction in δ18O) to the upper 100–150 m of the water column in the southeast Weddell Sea.

M R Price - One of the best experts on this subject based on the ideXlab platform.

  • Ice-shelf – ocean interactions at Fimbul Ice Shelf, Antarctica from oxygen isotope ratio measurements
    Copernicus Publications, 2008
    Co-Authors: Keith W Nicholls, Karen J. Heywood, M R Price
    Abstract:

    Melt water from the floating ice shelves at the margins of the southeastern Weddell Sea makes a significant contribution to the fresh water budget of the region. In February 2005 a multi-institution team conducted an oceanographic campaign at Fimbul Ice Shelf on the Greenwich Meridian as part of the Autosub Under Ice programme. This included a mission of the autonomous submarine Autosub 25 km into the cavity beneath Fimbul Ice Shelf, and a number of ship-based hydrographic sections on the continental shelf and adjacent to the ice shelf front. The measurements reveal two significant sources of glacial melt water at Fimbul Ice Shelf: the main cavity under the ice shelf and an ice tongue, Trolltunga, that protrudes from the main ice front and out over the continental slope into deep water. Glacial melt water is concentrated in a 200 m thick Ice Shelf Water (ISW) layer below the base of the ice shelf at 150–200 m, with a maximum glacial melt concentration of up to 1.16%. Some glacial melt is found throughout the water column, and much of this is from sources other than Fimbul Ice Shelf. However, at least 0.2% of the water in the ISW layer cannot be accounted for by other processes and must have been contributed by the ice shelf. Just downstream of Fimbul Ice Shelf we observe locally created ISW mixing out across the continental slope. The ISW formed here is much less dense than that formed in the southwest Weddell Sea, and will ultimately contribute a freshening (and reduction in δ18O) to the upper 100–150 m of the water column in the southeast Weddell Sea

  • ice shelf ocean interactions at fimbul ice shelf antarctica from oxygen isotope ratio measurements
    Ocean Science, 2007
    Co-Authors: M R Price, Karen J. Heywood, Keith W Nicholls
    Abstract:

    Abstract. Melt water from the floating ice shelves at the margins of the southeastern Weddell Sea makes a significant contribution to the fresh water budget of the region. In February 2005 a multi-institution team conducted an oceanographic campaign at Fimbul Ice Shelf on the Greenwich Meridian as part of the Autosub Under Ice programme. This included a mission of the autonomous submarine Autosub 25 km into the cavity beneath Fimbul Ice Shelf, and a number of ship-based hydrographic sections on the continental shelf and adjacent to the ice shelf front. The measurements reveal two significant sources of glacial melt water at Fimbul Ice Shelf: the main cavity under the ice shelf and an ice tongue, Trolltunga, that protrudes from the main ice front and out over the continental slope into deep water. Glacial melt water is concentrated in a 200 m thick Ice Shelf Water (ISW) layer below the base of the ice shelf at 150–200 m, with a maximum glacial melt concentration of up to 1.16%. Some glacial melt is found throughout the water column, and much of this is from sources other than Fimbul Ice Shelf. However, at least 0.2% of the water in the ISW layer cannot be accounted for by other processes and must have been contributed by the ice shelf. Just downstream of Fimbul Ice Shelf we observe locally created ISW mixing out across the continental slope. The ISW formed here is much less dense than that formed in the southwest Weddell Sea, and will ultimately contribute a freshening (and reduction in δ18O) to the upper 100–150 m of the water column in the southeast Weddell Sea.

  • oxygen isotope ratio measurements
    2007
    Co-Authors: M R Price, Kj Heywood, Kw Nicholls
    Abstract:

    Abstract. Melt water from the floating ice shelves at the margins of the southeastern Weddell Sea makes a signifi-cant contribution to the fresh water budget of the region. In February 2005 a multi-institution team conducted an oceano-graphic campaign at Fimbul Ice Shelf on the Greenwich Meridian as part of the Autosub Under Ice programme. This included a mission of the autonomous submarine Autosub 25 km into the cavity beneath Fimbul Ice Shelf, and a num-ber of ship-based hydrographic sections on the continental shelf and adjacent to the ice shelf front. The measurements reveal two significant sources of glacial melt water at Fim-bul Ice Shelf: the main cavity under the ice shelf and an ice tongue, Trolltunga, that protrudes from the main ice front and out over the continental slope into deep water. Glacial melt water is concentrated in a 200 m thick Ice Shelf Water (ISW) layer below the base of the ice shelf at 150–200 m, with a maximum glacial melt concentration of up to 1.16%. Some glacial melt is found throughout the water column, and much of this is from sources other than Fimbul Ice Shelf. However, at least 0.2 % of the water in the ISW layer can-not be accounted for by other processes and must have been contributed by the ice shelf. Just downstream of Fimbul Ice Shelf we observe locally created ISW mixing out across the continental slope. The ISW formed here is much less dense than that formed in the southwest Weddell Sea, and will ul-timately contribute a freshening (and reduction in δ18O) to the upper 100–150 m of the water column in the southeas