Haemophilus parainfluenzae

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 1161 Experts worldwide ranked by ideXlab platform

Shihao Liang - One of the best experts on this subject based on the ideXlab platform.

  • The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
    Frontiers in cellular and infection microbiology, 2019
    Co-Authors: Yuqing Feng, Fei Liu, Zhiguo Zhang, Yanan Hao, Shihao Liang
    Abstract:

    Cross talk occurs between the human gut and the lung through a gut-lung axis involving the gut microbiota. However, the signatures of the human gut microbiota after active Mycobacterium tuberculosis infection have not been fully understood. Here, we investigated changes in the gut microbiota in tuberculosis (TB) patients by shotgun sequencing the gut microbiomes of 31 healthy controls and 46 patients. We observed a dramatic changes in gut microbiota in tuberculosis patients as reflected by significant decreases in species number and microbial diversity. The gut microbiota of TB patients were mostly featured by the striking decrease of short-chain fatty acids (SCFAs)-producingbacteria as well as associated metabolic pathways. A classification model based on the abundance of three species, Haemophilus parainfluenzae, Roseburia inulinivorans, and Roseburia hominis, performed well for discriminating between healthy and diseased patients. Additionally, the healthy and diseased states can be distinguished by SNPs in the species of B. vulgatus. We present a comprehensive profile of changes in the microbiota in clinical TB patients. Our findings will shed light on the design of future diagnoses and treatments for M. tuberculosis infections.

  • Data_Sheet_1_The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients.docx
    2019
    Co-Authors: Yuqing Feng, Fei Liu, Zhiguo Zhang, Yanan Hao, Shihao Liang
    Abstract:

    Cross talk occurs between the human gut and the lung through a gut-lung axis involving the gut microbiota. However, the signatures of the human gut microbiota after active Mycobacterium tuberculosis infection have not been fully understood. Here, we investigated changes in the gut microbiota in tuberculosis (TB) patients by shotgun sequencing the gut microbiomes of 31 healthy controls and 46 patients. We observed a dramatic changes in gut microbiota in tuberculosis patients as reflected by significant decreases in species number and microbial diversity. The gut microbiota of TB patients were mostly featured by the striking decrease of short-chain fatty acids (SCFAs)-producingbacteria as well as associated metabolic pathways. A classification model based on the abundance of three species, Haemophilus parainfluenzae, Roseburia inulinivorans, and Roseburia hominis, performed well for discriminating between healthy and diseased patients. Additionally, the healthy and diseased states can be distinguished by SNPs in the species of B. vulgatus. We present a comprehensive profile of changes in the microbiota in clinical TB patients. Our findings will shed light on the design of future diagnoses and treatments for M. tuberculosis infections.

  • Data_Sheet_1_The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients.xlsx
    2019
    Co-Authors: Yuqing Feng, Fei Liu, Zhiguo Zhang, Yanan Hao, Shihao Liang
    Abstract:

    Cross talk occurs between the human gut and the lung through a gut-lung axis involving the gut microbiota. However, the signatures of the human gut microbiota after active Mycobacterium tuberculosis infection have not been fully understood. Here, we investigated changes in the gut microbiota in tuberculosis (TB) patients by shotgun sequencing the gut microbiomes of 31 healthy controls and 46 patients. We observed a dramatic changes in gut microbiota in tuberculosis patients as reflected by significant decreases in species number and microbial diversity. The gut microbiota of TB patients were mostly featured by the striking decrease of short-chain fatty acids (SCFAs)-producingbacteria as well as associated metabolic pathways. A classification model based on the abundance of three species, Haemophilus parainfluenzae, Roseburia inulinivorans, and Roseburia hominis, performed well for discriminating between healthy and diseased patients. Additionally, the healthy and diseased states can be distinguished by SNPs in the species of B. vulgatus. We present a comprehensive profile of changes in the microbiota in clinical TB patients. Our findings will shed light on the design of future diagnoses and treatments for M. tuberculosis infections.

Patricia A. Bradford - One of the best experts on this subject based on the ideXlab platform.

  • in vitro activity of azd0914 a novel bacterial dna gyrase topoisomerase iv inhibitor against clinically relevant gram positive and fastidious gram negative pathogens
    Antimicrobial Agents and Chemotherapy, 2015
    Co-Authors: Douglas J Biedenbach, Michael D. Huband, Meredith Hackel, Boudewijn L M De Jonge, Daniel F Sahm, Patricia A. Bradford
    Abstract:

    AZD0914, a new spiropyrimidinetrione bacterial DNA gyrase inhibitor with a novel mode of inhibition, has activity against bacterial species commonly cultured from patient infection specimens, including fluoroquinolone-resistant isolates. This study assessed the in vitro activity of AZD0914 against key Gram-positive and fastidious Gram-negative clinical isolates collected globally in 2013. AZD0914 demonstrated potent activity, with MIC90s for AZD0914 of 0.25 mg/liter against Staphylococcus aureus (n = 11,680), coagulase-negative staphylococci (n = 1,923), streptococci (n = 4,380), and Moraxella catarrhalis (n = 145), 0.5 mg/liter against Staphylococcus lugdunensis (n = 120) and Haemophilus influenzae (n = 352), 1 mg/liter against Enterococcus faecalis (n = 1,241), and 2 mg/liter against Haemophilus parainfluenzae (n = 70). The activity against Enterococcus faecium was more limited (MIC90, 8 mg/liter). The spectrum and potency of AZD0914 included fluoroquinolone-resistant isolates in each species group, including methicillin-resistant staphylococci, penicillin-resistant streptococci, vancomycin-resistant enterococci, β-lactamase-producing Haemophilus spp., and M. catarrhalis. Based on these in vitro findings, AZD0914 warrants further investigation for its utility against a variety of Gram-positive and fastidious Gram-negative bacterial species.

Yuqing Feng - One of the best experts on this subject based on the ideXlab platform.

  • The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
    Frontiers in cellular and infection microbiology, 2019
    Co-Authors: Yuqing Feng, Fei Liu, Zhiguo Zhang, Yanan Hao, Shihao Liang
    Abstract:

    Cross talk occurs between the human gut and the lung through a gut-lung axis involving the gut microbiota. However, the signatures of the human gut microbiota after active Mycobacterium tuberculosis infection have not been fully understood. Here, we investigated changes in the gut microbiota in tuberculosis (TB) patients by shotgun sequencing the gut microbiomes of 31 healthy controls and 46 patients. We observed a dramatic changes in gut microbiota in tuberculosis patients as reflected by significant decreases in species number and microbial diversity. The gut microbiota of TB patients were mostly featured by the striking decrease of short-chain fatty acids (SCFAs)-producingbacteria as well as associated metabolic pathways. A classification model based on the abundance of three species, Haemophilus parainfluenzae, Roseburia inulinivorans, and Roseburia hominis, performed well for discriminating between healthy and diseased patients. Additionally, the healthy and diseased states can be distinguished by SNPs in the species of B. vulgatus. We present a comprehensive profile of changes in the microbiota in clinical TB patients. Our findings will shed light on the design of future diagnoses and treatments for M. tuberculosis infections.

  • Data_Sheet_1_The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients.docx
    2019
    Co-Authors: Yuqing Feng, Fei Liu, Zhiguo Zhang, Yanan Hao, Shihao Liang
    Abstract:

    Cross talk occurs between the human gut and the lung through a gut-lung axis involving the gut microbiota. However, the signatures of the human gut microbiota after active Mycobacterium tuberculosis infection have not been fully understood. Here, we investigated changes in the gut microbiota in tuberculosis (TB) patients by shotgun sequencing the gut microbiomes of 31 healthy controls and 46 patients. We observed a dramatic changes in gut microbiota in tuberculosis patients as reflected by significant decreases in species number and microbial diversity. The gut microbiota of TB patients were mostly featured by the striking decrease of short-chain fatty acids (SCFAs)-producingbacteria as well as associated metabolic pathways. A classification model based on the abundance of three species, Haemophilus parainfluenzae, Roseburia inulinivorans, and Roseburia hominis, performed well for discriminating between healthy and diseased patients. Additionally, the healthy and diseased states can be distinguished by SNPs in the species of B. vulgatus. We present a comprehensive profile of changes in the microbiota in clinical TB patients. Our findings will shed light on the design of future diagnoses and treatments for M. tuberculosis infections.

  • Data_Sheet_1_The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients.xlsx
    2019
    Co-Authors: Yuqing Feng, Fei Liu, Zhiguo Zhang, Yanan Hao, Shihao Liang
    Abstract:

    Cross talk occurs between the human gut and the lung through a gut-lung axis involving the gut microbiota. However, the signatures of the human gut microbiota after active Mycobacterium tuberculosis infection have not been fully understood. Here, we investigated changes in the gut microbiota in tuberculosis (TB) patients by shotgun sequencing the gut microbiomes of 31 healthy controls and 46 patients. We observed a dramatic changes in gut microbiota in tuberculosis patients as reflected by significant decreases in species number and microbial diversity. The gut microbiota of TB patients were mostly featured by the striking decrease of short-chain fatty acids (SCFAs)-producingbacteria as well as associated metabolic pathways. A classification model based on the abundance of three species, Haemophilus parainfluenzae, Roseburia inulinivorans, and Roseburia hominis, performed well for discriminating between healthy and diseased patients. Additionally, the healthy and diseased states can be distinguished by SNPs in the species of B. vulgatus. We present a comprehensive profile of changes in the microbiota in clinical TB patients. Our findings will shed light on the design of future diagnoses and treatments for M. tuberculosis infections.

Douglas J Biedenbach - One of the best experts on this subject based on the ideXlab platform.

  • in vitro activity of azd0914 a novel bacterial dna gyrase topoisomerase iv inhibitor against clinically relevant gram positive and fastidious gram negative pathogens
    Antimicrobial Agents and Chemotherapy, 2015
    Co-Authors: Douglas J Biedenbach, Michael D. Huband, Meredith Hackel, Boudewijn L M De Jonge, Daniel F Sahm, Patricia A. Bradford
    Abstract:

    AZD0914, a new spiropyrimidinetrione bacterial DNA gyrase inhibitor with a novel mode of inhibition, has activity against bacterial species commonly cultured from patient infection specimens, including fluoroquinolone-resistant isolates. This study assessed the in vitro activity of AZD0914 against key Gram-positive and fastidious Gram-negative clinical isolates collected globally in 2013. AZD0914 demonstrated potent activity, with MIC90s for AZD0914 of 0.25 mg/liter against Staphylococcus aureus (n = 11,680), coagulase-negative staphylococci (n = 1,923), streptococci (n = 4,380), and Moraxella catarrhalis (n = 145), 0.5 mg/liter against Staphylococcus lugdunensis (n = 120) and Haemophilus influenzae (n = 352), 1 mg/liter against Enterococcus faecalis (n = 1,241), and 2 mg/liter against Haemophilus parainfluenzae (n = 70). The activity against Enterococcus faecium was more limited (MIC90, 8 mg/liter). The spectrum and potency of AZD0914 included fluoroquinolone-resistant isolates in each species group, including methicillin-resistant staphylococci, penicillin-resistant streptococci, vancomycin-resistant enterococci, β-lactamase-producing Haemophilus spp., and M. catarrhalis. Based on these in vitro findings, AZD0914 warrants further investigation for its utility against a variety of Gram-positive and fastidious Gram-negative bacterial species.

Fei Liu - One of the best experts on this subject based on the ideXlab platform.

  • The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
    Frontiers in cellular and infection microbiology, 2019
    Co-Authors: Yuqing Feng, Fei Liu, Zhiguo Zhang, Yanan Hao, Shihao Liang
    Abstract:

    Cross talk occurs between the human gut and the lung through a gut-lung axis involving the gut microbiota. However, the signatures of the human gut microbiota after active Mycobacterium tuberculosis infection have not been fully understood. Here, we investigated changes in the gut microbiota in tuberculosis (TB) patients by shotgun sequencing the gut microbiomes of 31 healthy controls and 46 patients. We observed a dramatic changes in gut microbiota in tuberculosis patients as reflected by significant decreases in species number and microbial diversity. The gut microbiota of TB patients were mostly featured by the striking decrease of short-chain fatty acids (SCFAs)-producingbacteria as well as associated metabolic pathways. A classification model based on the abundance of three species, Haemophilus parainfluenzae, Roseburia inulinivorans, and Roseburia hominis, performed well for discriminating between healthy and diseased patients. Additionally, the healthy and diseased states can be distinguished by SNPs in the species of B. vulgatus. We present a comprehensive profile of changes in the microbiota in clinical TB patients. Our findings will shed light on the design of future diagnoses and treatments for M. tuberculosis infections.

  • Data_Sheet_1_The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients.docx
    2019
    Co-Authors: Yuqing Feng, Fei Liu, Zhiguo Zhang, Yanan Hao, Shihao Liang
    Abstract:

    Cross talk occurs between the human gut and the lung through a gut-lung axis involving the gut microbiota. However, the signatures of the human gut microbiota after active Mycobacterium tuberculosis infection have not been fully understood. Here, we investigated changes in the gut microbiota in tuberculosis (TB) patients by shotgun sequencing the gut microbiomes of 31 healthy controls and 46 patients. We observed a dramatic changes in gut microbiota in tuberculosis patients as reflected by significant decreases in species number and microbial diversity. The gut microbiota of TB patients were mostly featured by the striking decrease of short-chain fatty acids (SCFAs)-producingbacteria as well as associated metabolic pathways. A classification model based on the abundance of three species, Haemophilus parainfluenzae, Roseburia inulinivorans, and Roseburia hominis, performed well for discriminating between healthy and diseased patients. Additionally, the healthy and diseased states can be distinguished by SNPs in the species of B. vulgatus. We present a comprehensive profile of changes in the microbiota in clinical TB patients. Our findings will shed light on the design of future diagnoses and treatments for M. tuberculosis infections.

  • Data_Sheet_1_The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients.xlsx
    2019
    Co-Authors: Yuqing Feng, Fei Liu, Zhiguo Zhang, Yanan Hao, Shihao Liang
    Abstract:

    Cross talk occurs between the human gut and the lung through a gut-lung axis involving the gut microbiota. However, the signatures of the human gut microbiota after active Mycobacterium tuberculosis infection have not been fully understood. Here, we investigated changes in the gut microbiota in tuberculosis (TB) patients by shotgun sequencing the gut microbiomes of 31 healthy controls and 46 patients. We observed a dramatic changes in gut microbiota in tuberculosis patients as reflected by significant decreases in species number and microbial diversity. The gut microbiota of TB patients were mostly featured by the striking decrease of short-chain fatty acids (SCFAs)-producingbacteria as well as associated metabolic pathways. A classification model based on the abundance of three species, Haemophilus parainfluenzae, Roseburia inulinivorans, and Roseburia hominis, performed well for discriminating between healthy and diseased patients. Additionally, the healthy and diseased states can be distinguished by SNPs in the species of B. vulgatus. We present a comprehensive profile of changes in the microbiota in clinical TB patients. Our findings will shed light on the design of future diagnoses and treatments for M. tuberculosis infections.