Hardening Mechanism

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 315 Experts worldwide ranked by ideXlab platform

Xiaohong Chen - One of the best experts on this subject based on the ideXlab platform.

  • New understanding of Hardening Mechanism of TiN/SiNx-based nanocomposite films.
    Nanoscale research letters, 2013
    Co-Authors: Ping Liu, Yongsheng Zhao, Xinkuan Liu, Xiaohong Chen, He Daihua
    Abstract:

    In order to clarify the controversies of Hardening Mechanism for TiN/SiNx-based nanocomposite films, the microstructure and hardness for TiN/SiNx and TiAlN/SiNx nanocomposite films with different Si content were studied. With the increase of Si content, the crystallization degree for two series of films firstly increases and then decreases. The microstructural observations suggest that when SiNx interfacial phase reaches to a proper thickness, it can be crystallized between adjacent TiN or TiAlN nanocrystallites, which can coordinate misorientations between nanocrystallites and grow coherently with them, resulting in blocking of the dislocation motions and Hardening of the film. The microstructure of TiN/SiNx-based nanocomposite film can be characterized as the nanocomposite structure with TiN-based nanocrystallites surrounded by crystallized SiNx interfacial phase, which can be denoted by nc-TiN/c-SiNx model ('c’ before SiNx means crystallized) and well explain the coexistence between nanocomposite structure and columnar growth structure within the TiN/SiNx-based film.

  • new understanding of Hardening Mechanism of tin sinx based nanocomposite films
    Nanoscale Research Letters, 2013
    Co-Authors: Ping Liu, Yongsheng Zhao, Xinkuan Liu, Xiaohong Chen
    Abstract:

    In order to clarify the controversies of Hardening Mechanism for TiN/SiNx-based nanocomposite films, the microstructure and hardness for TiN/SiNx and TiAlN/SiNx nanocomposite films with different Si content were studied. With the increase of Si content, the crystallization degree for two series of films firstly increases and then decreases. The microstructural observations suggest that when SiNx interfacial phase reaches to a proper thickness, it can be crystallized between adjacent TiN or TiAlN nanocrystallites, which can coordinate misorientations between nanocrystallites and grow coherently with them, resulting in blocking of the dislocation motions and Hardening of the film. The microstructure of TiN/SiNx-based nanocomposite film can be characterized as the nanocomposite structure with TiN-based nanocrystallites surrounded by crystallized SiNx interfacial phase, which can be denoted by nc-TiN/c-SiNx model ('c’ before SiNx means crystallized) and well explain the coexistence between nanocomposite structure and columnar growth structure within the TiN/SiNx-based film.

Ping Liu - One of the best experts on this subject based on the ideXlab platform.

  • New understanding of Hardening Mechanism of TiN/SiNx-based nanocomposite films.
    Nanoscale research letters, 2013
    Co-Authors: Ping Liu, Yongsheng Zhao, Xinkuan Liu, Xiaohong Chen, He Daihua
    Abstract:

    In order to clarify the controversies of Hardening Mechanism for TiN/SiNx-based nanocomposite films, the microstructure and hardness for TiN/SiNx and TiAlN/SiNx nanocomposite films with different Si content were studied. With the increase of Si content, the crystallization degree for two series of films firstly increases and then decreases. The microstructural observations suggest that when SiNx interfacial phase reaches to a proper thickness, it can be crystallized between adjacent TiN or TiAlN nanocrystallites, which can coordinate misorientations between nanocrystallites and grow coherently with them, resulting in blocking of the dislocation motions and Hardening of the film. The microstructure of TiN/SiNx-based nanocomposite film can be characterized as the nanocomposite structure with TiN-based nanocrystallites surrounded by crystallized SiNx interfacial phase, which can be denoted by nc-TiN/c-SiNx model ('c’ before SiNx means crystallized) and well explain the coexistence between nanocomposite structure and columnar growth structure within the TiN/SiNx-based film.

  • new understanding of Hardening Mechanism of tin sinx based nanocomposite films
    Nanoscale Research Letters, 2013
    Co-Authors: Ping Liu, Yongsheng Zhao, Xinkuan Liu, Xiaohong Chen
    Abstract:

    In order to clarify the controversies of Hardening Mechanism for TiN/SiNx-based nanocomposite films, the microstructure and hardness for TiN/SiNx and TiAlN/SiNx nanocomposite films with different Si content were studied. With the increase of Si content, the crystallization degree for two series of films firstly increases and then decreases. The microstructural observations suggest that when SiNx interfacial phase reaches to a proper thickness, it can be crystallized between adjacent TiN or TiAlN nanocrystallites, which can coordinate misorientations between nanocrystallites and grow coherently with them, resulting in blocking of the dislocation motions and Hardening of the film. The microstructure of TiN/SiNx-based nanocomposite film can be characterized as the nanocomposite structure with TiN-based nanocrystallites surrounded by crystallized SiNx interfacial phase, which can be denoted by nc-TiN/c-SiNx model ('c’ before SiNx means crystallized) and well explain the coexistence between nanocomposite structure and columnar growth structure within the TiN/SiNx-based film.

He Daihua - One of the best experts on this subject based on the ideXlab platform.

  • New understanding of Hardening Mechanism of TiN/SiNx-based nanocomposite films.
    Nanoscale research letters, 2013
    Co-Authors: Ping Liu, Yongsheng Zhao, Xinkuan Liu, Xiaohong Chen, He Daihua
    Abstract:

    In order to clarify the controversies of Hardening Mechanism for TiN/SiNx-based nanocomposite films, the microstructure and hardness for TiN/SiNx and TiAlN/SiNx nanocomposite films with different Si content were studied. With the increase of Si content, the crystallization degree for two series of films firstly increases and then decreases. The microstructural observations suggest that when SiNx interfacial phase reaches to a proper thickness, it can be crystallized between adjacent TiN or TiAlN nanocrystallites, which can coordinate misorientations between nanocrystallites and grow coherently with them, resulting in blocking of the dislocation motions and Hardening of the film. The microstructure of TiN/SiNx-based nanocomposite film can be characterized as the nanocomposite structure with TiN-based nanocrystallites surrounded by crystallized SiNx interfacial phase, which can be denoted by nc-TiN/c-SiNx model ('c’ before SiNx means crystallized) and well explain the coexistence between nanocomposite structure and columnar growth structure within the TiN/SiNx-based film.

Yongsheng Zhao - One of the best experts on this subject based on the ideXlab platform.

  • New understanding of Hardening Mechanism of TiN/SiNx-based nanocomposite films.
    Nanoscale research letters, 2013
    Co-Authors: Ping Liu, Yongsheng Zhao, Xinkuan Liu, Xiaohong Chen, He Daihua
    Abstract:

    In order to clarify the controversies of Hardening Mechanism for TiN/SiNx-based nanocomposite films, the microstructure and hardness for TiN/SiNx and TiAlN/SiNx nanocomposite films with different Si content were studied. With the increase of Si content, the crystallization degree for two series of films firstly increases and then decreases. The microstructural observations suggest that when SiNx interfacial phase reaches to a proper thickness, it can be crystallized between adjacent TiN or TiAlN nanocrystallites, which can coordinate misorientations between nanocrystallites and grow coherently with them, resulting in blocking of the dislocation motions and Hardening of the film. The microstructure of TiN/SiNx-based nanocomposite film can be characterized as the nanocomposite structure with TiN-based nanocrystallites surrounded by crystallized SiNx interfacial phase, which can be denoted by nc-TiN/c-SiNx model ('c’ before SiNx means crystallized) and well explain the coexistence between nanocomposite structure and columnar growth structure within the TiN/SiNx-based film.

  • new understanding of Hardening Mechanism of tin sinx based nanocomposite films
    Nanoscale Research Letters, 2013
    Co-Authors: Ping Liu, Yongsheng Zhao, Xinkuan Liu, Xiaohong Chen
    Abstract:

    In order to clarify the controversies of Hardening Mechanism for TiN/SiNx-based nanocomposite films, the microstructure and hardness for TiN/SiNx and TiAlN/SiNx nanocomposite films with different Si content were studied. With the increase of Si content, the crystallization degree for two series of films firstly increases and then decreases. The microstructural observations suggest that when SiNx interfacial phase reaches to a proper thickness, it can be crystallized between adjacent TiN or TiAlN nanocrystallites, which can coordinate misorientations between nanocrystallites and grow coherently with them, resulting in blocking of the dislocation motions and Hardening of the film. The microstructure of TiN/SiNx-based nanocomposite film can be characterized as the nanocomposite structure with TiN-based nanocrystallites surrounded by crystallized SiNx interfacial phase, which can be denoted by nc-TiN/c-SiNx model ('c’ before SiNx means crystallized) and well explain the coexistence between nanocomposite structure and columnar growth structure within the TiN/SiNx-based film.

Xinkuan Liu - One of the best experts on this subject based on the ideXlab platform.

  • New understanding of Hardening Mechanism of TiN/SiNx-based nanocomposite films.
    Nanoscale research letters, 2013
    Co-Authors: Ping Liu, Yongsheng Zhao, Xinkuan Liu, Xiaohong Chen, He Daihua
    Abstract:

    In order to clarify the controversies of Hardening Mechanism for TiN/SiNx-based nanocomposite films, the microstructure and hardness for TiN/SiNx and TiAlN/SiNx nanocomposite films with different Si content were studied. With the increase of Si content, the crystallization degree for two series of films firstly increases and then decreases. The microstructural observations suggest that when SiNx interfacial phase reaches to a proper thickness, it can be crystallized between adjacent TiN or TiAlN nanocrystallites, which can coordinate misorientations between nanocrystallites and grow coherently with them, resulting in blocking of the dislocation motions and Hardening of the film. The microstructure of TiN/SiNx-based nanocomposite film can be characterized as the nanocomposite structure with TiN-based nanocrystallites surrounded by crystallized SiNx interfacial phase, which can be denoted by nc-TiN/c-SiNx model ('c’ before SiNx means crystallized) and well explain the coexistence between nanocomposite structure and columnar growth structure within the TiN/SiNx-based film.

  • new understanding of Hardening Mechanism of tin sinx based nanocomposite films
    Nanoscale Research Letters, 2013
    Co-Authors: Ping Liu, Yongsheng Zhao, Xinkuan Liu, Xiaohong Chen
    Abstract:

    In order to clarify the controversies of Hardening Mechanism for TiN/SiNx-based nanocomposite films, the microstructure and hardness for TiN/SiNx and TiAlN/SiNx nanocomposite films with different Si content were studied. With the increase of Si content, the crystallization degree for two series of films firstly increases and then decreases. The microstructural observations suggest that when SiNx interfacial phase reaches to a proper thickness, it can be crystallized between adjacent TiN or TiAlN nanocrystallites, which can coordinate misorientations between nanocrystallites and grow coherently with them, resulting in blocking of the dislocation motions and Hardening of the film. The microstructure of TiN/SiNx-based nanocomposite film can be characterized as the nanocomposite structure with TiN-based nanocrystallites surrounded by crystallized SiNx interfacial phase, which can be denoted by nc-TiN/c-SiNx model ('c’ before SiNx means crystallized) and well explain the coexistence between nanocomposite structure and columnar growth structure within the TiN/SiNx-based film.