Heart Dilatation

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 11913 Experts worldwide ranked by ideXlab platform

Ramon Brugada - One of the best experts on this subject based on the ideXlab platform.

  • familial dilated cardiomyopathy caused by a novel frameshift in the bag3 gene
    PLOS ONE, 2016
    Co-Authors: Rocio Toro, Alexandra Perezserra, Oscar Campuzano, Javier Moncayoarlandi, Catarina Allegue, Anna Iglesias, A Mangas, Ramon Brugada
    Abstract:

    Background Dilated cardiomyopathy, a major cause of chronic Heart failure and cardiac transplantation, is characterized by left ventricular or biventricular Heart Dilatation. In nearly 50% of cases the pathology is inherited, and more than 60 genes have been reported as disease-causing. However, in 30% of familial cases the mutation remains unidentified even after comprehensive genetic analysis. This study clinically and genetically assessed a large Spanish family affected by dilated cardiomyopathy to search for novel variations.

  • familial dilated cardiomyopathy caused by a novel frameshift in the bag3 gene
    PLOS ONE, 2016
    Co-Authors: Rocio Toro, Alexandra Perezserra, Oscar Campuzano, Javier Moncayoarlandi, Catarina Allegue, Anna Iglesias, A Mangas, Ramon Brugada
    Abstract:

    Background Dilated cardiomyopathy, a major cause of chronic Heart failure and cardiac transplantation, is characterized by left ventricular or biventricular Heart Dilatation. In nearly 50% of cases the pathology is inherited, and more than 60 genes have been reported as disease-causing. However, in 30% of familial cases the mutation remains unidentified even after comprehensive genetic analysis. This study clinically and genetically assessed a large Spanish family affected by dilated cardiomyopathy to search for novel variations. Methods and Results Our study included a total of 100 family members. Clinical assessment was performed in alive, and genetic analysis was also performed in alive and 1 deceased relative. Genetic screening included resequencing of 55 genes associated with sudden cardiac death, and Sanger sequencing of main disease-associated genes. Genetic analysis identified a frame-shift variation in BAG3 (p.H243Tfr*64) in 32 patients. Genotype-phenotype correlation identified substantial heterogeneity in disease expression. Of 32 genetic carriers (one deceased), 21 relatives were clinically affected, and 10 were asymptomatic. Seventeen of the symptomatic genetic carriers exhibited proto-diastolic septal knock by echocardiographic assessment. Conclusions We report p.H243Tfr*64_BAG3 as a novel pathogenic variation responsible for familial dilated cardiomyopathy. This variation correlates with a more severe phenotype of the disease, mainly in younger individuals. Genetic analysis in families, even asymptomatic individuals, enables early identification of individuals at risk and allows implementation of preventive measures.

Daniel S Knight - One of the best experts on this subject based on the ideXlab platform.

  • cardiovascular magnetic resonance guided right Heart catheterization in a conventional cmr environment predictors of procedure success and duration in pulmonary artery hypertension
    Journal of Cardiovascular Magnetic Resonance, 2019
    Co-Authors: Daniel S Knight, Tushar Kotecha, Ana Martineznaharro, James T Brown, Michele Bertelli, Marianna Fontana, Vivek Muthurangu
    Abstract:

    Cardiovascular magnetic resonance imaging (CMR) is valuable for the investigation and management of pulmonary artery hypertension (PAH), but the direct measurement of pulmonary hemodynamics by right Heart catheterization is still necessary. CMR-guided right Heart catheterization (CMR-RHC) combines the benefits of CMR and invasive cardiac catheterization, but its feasibility in patients with acquired PAH has not been established. The aims of this study are to: (1) demonstrate the feasibility of CMR-RHC in patients being assessed for PAH in a conventional diagnostic CMR scanner room; (2) determine the predictors of (i) procedure duration, and (ii) procedural failure or technical difficulty as determined by the adjunctive need for a guidewire. Fifty patients investigated for suspected or known PH underwent CMR-RHC. Durations of separate procedural components were recorded, including time taken to pass the catheter from the femoral vein to a stable wedge position (procedure time) and total time the patient spent in the CMR department (department time). Associations between procedural failure/guidewire usage and hemodynamic/CMR measures were assessed using logistic regression. Relationships between procedure times and hemodynamic/CMR measures were evaluated using Spearman’s correlation coefficient. A full CMR-RHC study was successfully completed in 47 (94%) patients. CMR-conditional guidewires were used in 6 (12%) patients. Metrics associated with guidewire use/procedural failure were higher mean pulmonary artery (PA) pressures (mPAP: OR = 1.125, p = 0.018), right Heart Dilatation (right ventricular (RV) end-systolic volume (RVESV): OR = 1.028, p = 0.018), RV hypertrophy (OR = 1.050, p = 0.0067) and RV ejection fraction (EF) (OR = 0.914, p = 0.014). Median catheter and department times were 3.6 (2.0–7.7) minutes and 60.0 (54.0–68.5) minutes, respectively. All procedure times became significantly shorter with increasing procedural experience (p < 0.05). Catheterization time was also associated with PH severity (RV systolic pressure: rho = 0.46, p = 0.0013) and increasing RV end-systolic volume (RVESV: rho = 0.41, p = 0.0043), hypertrophy (rho = 0.43, p = 0.0025) and dysfunction (RVEF: rho = − 0.32, p = 0.031). This study demonstrates that CMR-RHC using standard technology can be incorporated into routine clinical practice for the investigation of PAH. Procedural failure was rare but more likely in patients with severe PAH. Procedure time is clinically acceptable and increases with worsening PAH severity.

Rocio Toro - One of the best experts on this subject based on the ideXlab platform.

  • familial dilated cardiomyopathy caused by a novel frameshift in the bag3 gene
    PLOS ONE, 2016
    Co-Authors: Rocio Toro, Alexandra Perezserra, Oscar Campuzano, Javier Moncayoarlandi, Catarina Allegue, Anna Iglesias, A Mangas, Ramon Brugada
    Abstract:

    Background Dilated cardiomyopathy, a major cause of chronic Heart failure and cardiac transplantation, is characterized by left ventricular or biventricular Heart Dilatation. In nearly 50% of cases the pathology is inherited, and more than 60 genes have been reported as disease-causing. However, in 30% of familial cases the mutation remains unidentified even after comprehensive genetic analysis. This study clinically and genetically assessed a large Spanish family affected by dilated cardiomyopathy to search for novel variations.

  • familial dilated cardiomyopathy caused by a novel frameshift in the bag3 gene
    PLOS ONE, 2016
    Co-Authors: Rocio Toro, Alexandra Perezserra, Oscar Campuzano, Javier Moncayoarlandi, Catarina Allegue, Anna Iglesias, A Mangas, Ramon Brugada
    Abstract:

    Background Dilated cardiomyopathy, a major cause of chronic Heart failure and cardiac transplantation, is characterized by left ventricular or biventricular Heart Dilatation. In nearly 50% of cases the pathology is inherited, and more than 60 genes have been reported as disease-causing. However, in 30% of familial cases the mutation remains unidentified even after comprehensive genetic analysis. This study clinically and genetically assessed a large Spanish family affected by dilated cardiomyopathy to search for novel variations. Methods and Results Our study included a total of 100 family members. Clinical assessment was performed in alive, and genetic analysis was also performed in alive and 1 deceased relative. Genetic screening included resequencing of 55 genes associated with sudden cardiac death, and Sanger sequencing of main disease-associated genes. Genetic analysis identified a frame-shift variation in BAG3 (p.H243Tfr*64) in 32 patients. Genotype-phenotype correlation identified substantial heterogeneity in disease expression. Of 32 genetic carriers (one deceased), 21 relatives were clinically affected, and 10 were asymptomatic. Seventeen of the symptomatic genetic carriers exhibited proto-diastolic septal knock by echocardiographic assessment. Conclusions We report p.H243Tfr*64_BAG3 as a novel pathogenic variation responsible for familial dilated cardiomyopathy. This variation correlates with a more severe phenotype of the disease, mainly in younger individuals. Genetic analysis in families, even asymptomatic individuals, enables early identification of individuals at risk and allows implementation of preventive measures.

Vivek Muthurangu - One of the best experts on this subject based on the ideXlab platform.

  • cardiovascular magnetic resonance guided right Heart catheterization in a conventional cmr environment predictors of procedure success and duration in pulmonary artery hypertension
    Journal of Cardiovascular Magnetic Resonance, 2019
    Co-Authors: Daniel S Knight, Tushar Kotecha, Ana Martineznaharro, James T Brown, Michele Bertelli, Marianna Fontana, Vivek Muthurangu
    Abstract:

    Cardiovascular magnetic resonance imaging (CMR) is valuable for the investigation and management of pulmonary artery hypertension (PAH), but the direct measurement of pulmonary hemodynamics by right Heart catheterization is still necessary. CMR-guided right Heart catheterization (CMR-RHC) combines the benefits of CMR and invasive cardiac catheterization, but its feasibility in patients with acquired PAH has not been established. The aims of this study are to: (1) demonstrate the feasibility of CMR-RHC in patients being assessed for PAH in a conventional diagnostic CMR scanner room; (2) determine the predictors of (i) procedure duration, and (ii) procedural failure or technical difficulty as determined by the adjunctive need for a guidewire. Fifty patients investigated for suspected or known PH underwent CMR-RHC. Durations of separate procedural components were recorded, including time taken to pass the catheter from the femoral vein to a stable wedge position (procedure time) and total time the patient spent in the CMR department (department time). Associations between procedural failure/guidewire usage and hemodynamic/CMR measures were assessed using logistic regression. Relationships between procedure times and hemodynamic/CMR measures were evaluated using Spearman’s correlation coefficient. A full CMR-RHC study was successfully completed in 47 (94%) patients. CMR-conditional guidewires were used in 6 (12%) patients. Metrics associated with guidewire use/procedural failure were higher mean pulmonary artery (PA) pressures (mPAP: OR = 1.125, p = 0.018), right Heart Dilatation (right ventricular (RV) end-systolic volume (RVESV): OR = 1.028, p = 0.018), RV hypertrophy (OR = 1.050, p = 0.0067) and RV ejection fraction (EF) (OR = 0.914, p = 0.014). Median catheter and department times were 3.6 (2.0–7.7) minutes and 60.0 (54.0–68.5) minutes, respectively. All procedure times became significantly shorter with increasing procedural experience (p < 0.05). Catheterization time was also associated with PH severity (RV systolic pressure: rho = 0.46, p = 0.0013) and increasing RV end-systolic volume (RVESV: rho = 0.41, p = 0.0043), hypertrophy (rho = 0.43, p = 0.0025) and dysfunction (RVEF: rho = − 0.32, p = 0.031). This study demonstrates that CMR-RHC using standard technology can be incorporated into routine clinical practice for the investigation of PAH. Procedural failure was rare but more likely in patients with severe PAH. Procedure time is clinically acceptable and increases with worsening PAH severity.

Tushar Kotecha - One of the best experts on this subject based on the ideXlab platform.

  • cardiovascular magnetic resonance guided right Heart catheterization in a conventional cmr environment predictors of procedure success and duration in pulmonary artery hypertension
    Journal of Cardiovascular Magnetic Resonance, 2019
    Co-Authors: Daniel S Knight, Tushar Kotecha, Ana Martineznaharro, James T Brown, Michele Bertelli, Marianna Fontana, Vivek Muthurangu
    Abstract:

    Cardiovascular magnetic resonance imaging (CMR) is valuable for the investigation and management of pulmonary artery hypertension (PAH), but the direct measurement of pulmonary hemodynamics by right Heart catheterization is still necessary. CMR-guided right Heart catheterization (CMR-RHC) combines the benefits of CMR and invasive cardiac catheterization, but its feasibility in patients with acquired PAH has not been established. The aims of this study are to: (1) demonstrate the feasibility of CMR-RHC in patients being assessed for PAH in a conventional diagnostic CMR scanner room; (2) determine the predictors of (i) procedure duration, and (ii) procedural failure or technical difficulty as determined by the adjunctive need for a guidewire. Fifty patients investigated for suspected or known PH underwent CMR-RHC. Durations of separate procedural components were recorded, including time taken to pass the catheter from the femoral vein to a stable wedge position (procedure time) and total time the patient spent in the CMR department (department time). Associations between procedural failure/guidewire usage and hemodynamic/CMR measures were assessed using logistic regression. Relationships between procedure times and hemodynamic/CMR measures were evaluated using Spearman’s correlation coefficient. A full CMR-RHC study was successfully completed in 47 (94%) patients. CMR-conditional guidewires were used in 6 (12%) patients. Metrics associated with guidewire use/procedural failure were higher mean pulmonary artery (PA) pressures (mPAP: OR = 1.125, p = 0.018), right Heart Dilatation (right ventricular (RV) end-systolic volume (RVESV): OR = 1.028, p = 0.018), RV hypertrophy (OR = 1.050, p = 0.0067) and RV ejection fraction (EF) (OR = 0.914, p = 0.014). Median catheter and department times were 3.6 (2.0–7.7) minutes and 60.0 (54.0–68.5) minutes, respectively. All procedure times became significantly shorter with increasing procedural experience (p < 0.05). Catheterization time was also associated with PH severity (RV systolic pressure: rho = 0.46, p = 0.0013) and increasing RV end-systolic volume (RVESV: rho = 0.41, p = 0.0043), hypertrophy (rho = 0.43, p = 0.0025) and dysfunction (RVEF: rho = − 0.32, p = 0.031). This study demonstrates that CMR-RHC using standard technology can be incorporated into routine clinical practice for the investigation of PAH. Procedural failure was rare but more likely in patients with severe PAH. Procedure time is clinically acceptable and increases with worsening PAH severity.