Hochberg Method

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 10167 Experts worldwide ranked by ideXlab platform

Annelise Genoux - One of the best experts on this subject based on the ideXlab platform.

  • RNY-derived small RNAs as a signature of coronary artery disease.
    BMC medicine, 2015
    Co-Authors: Emanuela Repetto, Laeticia Lichtenstein, Zoheir Hizir, Nedra Tekaya, Mohamed Benahmed, Jean-bernard Ruidavets, Laure-emmanuelle Zaragosi, Bertrand Perret, Laura Bouchareychas, Annelise Genoux
    Abstract:

    Data from next generation sequencing technologies uncovered the existence of many classes of small RNAs. Recent studies reported that small RNAs are released by cells and can be detected in the blood. In this report, we aimed to discover the occurrence of novel circulating small RNAs in coronary artery disease (CAD). We used high-throughput sequencing of small RNAs from human and mouse apoptotic primary macrophages, and analyzed the data by empirical Bayes moderated t-statistics to assess differential expression and the Benjamini and Hochberg Method to control the false discovery rate. Results were then confirmed by Northern blot and RT-qPCR in foam cells and in two animal models for atherosclerosis, namely ApoE −/− and Ldlr −/− mouse lines. Quantitative RT-PCR to detect identified small RNAs, the RNY-derived small RNAs, was performed using sera of 263 patients with CAD compared to 514 matched healthy controls; the Student t-test was applied to statistically assess differences. Associations of small RNAs with clinical characteristics and biological markers were tested using Spearman’s rank correlations, while multivariate logistic regressions were performed to test the statistical association of small RNA levels with CAD. Here, we report that, in macrophages stimulated with pro-apoptotic or pro-atherogenic stimuli, the Ro-associated non-coding RNAs, called RNYs or Y-RNAs, are processed into small RNAs (~24–34 nt) referred to as small-RNYs (s-RNYs), including s-RNY1-5p processed from RNY1. A significant upregulation of s-RNY expression was found in aortic arches and blood plasma from ApoE −/− and Ldlr −/− mice and in serum from CAD patients (P

  • RNY-derived small RNAs as a signature of coronary artery disease
    BMC Medicine, 2015
    Co-Authors: Emanuela Repetto, Laeticia Lichtenstein, Zoheir Hizir, Nedra Tekaya, Mohamed Benahmed, Jean-bernard Ruidavets, Laure-emmanuelle Zaragosi, Bertrand Perret, Laura Bouchareychas, Annelise Genoux
    Abstract:

    Background Data from next generation sequencing technologies uncovered the existence of many classes of small RNAs. Recent studies reported that small RNAs are released by cells and can be detected in the blood. In this report, we aimed to discover the occurrence of novel circulating small RNAs in coronary artery disease (CAD). Methods We used high-throughput sequencing of small RNAs from human and mouse apoptotic primary macrophages, and analyzed the data by empirical Bayes moderated t-statistics to assess differential expression and the Benjamini and Hochberg Method to control the false discovery rate. Results were then confirmed by Northern blot and RT-qPCR in foam cells and in two animal models for atherosclerosis, namely ApoE −/− and Ldlr −/− mouse lines. Quantitative RT-PCR to detect identified small RNAs, the RNY-derived small RNAs, was performed using sera of 263 patients with CAD compared to 514 matched healthy controls; the Student t-test was applied to statistically assess differences. Associations of small RNAs with clinical characteristics and biological markers were tested using Spearman’s rank correlations, while multivariate logistic regressions were performed to test the statistical association of small RNA levels with CAD. Results Here, we report that, in macrophages stimulated with pro-apoptotic or pro-atherogenic stimuli, the Ro-associated non-coding RNAs, called RNYs or Y-RNAs, are processed into small RNAs (~24–34 nt) referred to as small-RNYs (s-RNYs), including s-RNY1-5p processed from RNY1. A significant upregulation of s-RNY expression was found in aortic arches and blood plasma from ApoE −/− and Ldlr −/− mice and in serum from CAD patients (P

Kohji Nishida - One of the best experts on this subject based on the ideXlab platform.

  • Dynamic Scheimpflug Ocular Biomechanical Parameters in Untreated Primary Open Angle Glaucoma Eyes
    Investigative ophthalmology & visual science, 2020
    Co-Authors: Atsuya Miki, Yuichi Yasukura, Robert N. Weinreb, Naoyuki Maeda, Tomomi Yamada, Shizuka Koh, Tomoko Asai, Yasushi Ikuno, Kohji Nishida
    Abstract:

    To characterize the corneal biomechanical properties of glaucoma eyes by comparing the dynamic Scheimpflug biomechanical parameters between untreated glaucoma and control eyes. Cross-sectional observational data of dynamic Scheimpflug analyzer (Corvis ST) examinations were retrospectively collected from 35 eyes of 35 consecutive patients with untreated normal tension glaucoma and 35 eyes of 35 healthy patients matched on age and IOP. Ten biomechanical parameters were compared between the two groups using multivariable models adjusting for IOP, central corneal thickness, age, and axial length. The Benjamini-Hochberg Method was used to correct for multiple comparison. In multivariable models, glaucoma was associated with smaller applanation 1 time (P < 0.001, coefficient = -0.5865), applanation 2 time (P = 0.012, coefficient = -0.1702), radius (P = 0.006, coefficient = -0.5447), larger peak distance (P = 0.011, coefficient = 0.1023), deformation amplitude ratio at 1 mm (P < 0.001, coefficient = 0.072), and integrated radius (P < 0.001, coefficient = 1.094). These associations consistently indicate greater compliance of the cornea in glaucoma eyes. Untreated normal tension glaucoma eyes were more compliant than healthy eyes. The greater compliance (smaller stiffness) of normal tension glaucoma eyes may increase the risk of optic nerve damage. These results suggest the relevance of measuring biomechanical properties of glaucoma eyes.

Emanuela Repetto - One of the best experts on this subject based on the ideXlab platform.

  • RNY-derived small RNAs as a signature of coronary artery disease.
    BMC medicine, 2015
    Co-Authors: Emanuela Repetto, Laeticia Lichtenstein, Zoheir Hizir, Nedra Tekaya, Mohamed Benahmed, Jean-bernard Ruidavets, Laure-emmanuelle Zaragosi, Bertrand Perret, Laura Bouchareychas, Annelise Genoux
    Abstract:

    Data from next generation sequencing technologies uncovered the existence of many classes of small RNAs. Recent studies reported that small RNAs are released by cells and can be detected in the blood. In this report, we aimed to discover the occurrence of novel circulating small RNAs in coronary artery disease (CAD). We used high-throughput sequencing of small RNAs from human and mouse apoptotic primary macrophages, and analyzed the data by empirical Bayes moderated t-statistics to assess differential expression and the Benjamini and Hochberg Method to control the false discovery rate. Results were then confirmed by Northern blot and RT-qPCR in foam cells and in two animal models for atherosclerosis, namely ApoE −/− and Ldlr −/− mouse lines. Quantitative RT-PCR to detect identified small RNAs, the RNY-derived small RNAs, was performed using sera of 263 patients with CAD compared to 514 matched healthy controls; the Student t-test was applied to statistically assess differences. Associations of small RNAs with clinical characteristics and biological markers were tested using Spearman’s rank correlations, while multivariate logistic regressions were performed to test the statistical association of small RNA levels with CAD. Here, we report that, in macrophages stimulated with pro-apoptotic or pro-atherogenic stimuli, the Ro-associated non-coding RNAs, called RNYs or Y-RNAs, are processed into small RNAs (~24–34 nt) referred to as small-RNYs (s-RNYs), including s-RNY1-5p processed from RNY1. A significant upregulation of s-RNY expression was found in aortic arches and blood plasma from ApoE −/− and Ldlr −/− mice and in serum from CAD patients (P

  • RNY-derived small RNAs as a signature of coronary artery disease
    BMC Medicine, 2015
    Co-Authors: Emanuela Repetto, Laeticia Lichtenstein, Zoheir Hizir, Nedra Tekaya, Mohamed Benahmed, Jean-bernard Ruidavets, Laure-emmanuelle Zaragosi, Bertrand Perret, Laura Bouchareychas, Annelise Genoux
    Abstract:

    Background Data from next generation sequencing technologies uncovered the existence of many classes of small RNAs. Recent studies reported that small RNAs are released by cells and can be detected in the blood. In this report, we aimed to discover the occurrence of novel circulating small RNAs in coronary artery disease (CAD). Methods We used high-throughput sequencing of small RNAs from human and mouse apoptotic primary macrophages, and analyzed the data by empirical Bayes moderated t-statistics to assess differential expression and the Benjamini and Hochberg Method to control the false discovery rate. Results were then confirmed by Northern blot and RT-qPCR in foam cells and in two animal models for atherosclerosis, namely ApoE −/− and Ldlr −/− mouse lines. Quantitative RT-PCR to detect identified small RNAs, the RNY-derived small RNAs, was performed using sera of 263 patients with CAD compared to 514 matched healthy controls; the Student t-test was applied to statistically assess differences. Associations of small RNAs with clinical characteristics and biological markers were tested using Spearman’s rank correlations, while multivariate logistic regressions were performed to test the statistical association of small RNA levels with CAD. Results Here, we report that, in macrophages stimulated with pro-apoptotic or pro-atherogenic stimuli, the Ro-associated non-coding RNAs, called RNYs or Y-RNAs, are processed into small RNAs (~24–34 nt) referred to as small-RNYs (s-RNYs), including s-RNY1-5p processed from RNY1. A significant upregulation of s-RNY expression was found in aortic arches and blood plasma from ApoE −/− and Ldlr −/− mice and in serum from CAD patients (P

Atsuya Miki - One of the best experts on this subject based on the ideXlab platform.

  • Dynamic Scheimpflug Ocular Biomechanical Parameters in Untreated Primary Open Angle Glaucoma Eyes
    Investigative ophthalmology & visual science, 2020
    Co-Authors: Atsuya Miki, Yuichi Yasukura, Robert N. Weinreb, Naoyuki Maeda, Tomomi Yamada, Shizuka Koh, Tomoko Asai, Yasushi Ikuno, Kohji Nishida
    Abstract:

    To characterize the corneal biomechanical properties of glaucoma eyes by comparing the dynamic Scheimpflug biomechanical parameters between untreated glaucoma and control eyes. Cross-sectional observational data of dynamic Scheimpflug analyzer (Corvis ST) examinations were retrospectively collected from 35 eyes of 35 consecutive patients with untreated normal tension glaucoma and 35 eyes of 35 healthy patients matched on age and IOP. Ten biomechanical parameters were compared between the two groups using multivariable models adjusting for IOP, central corneal thickness, age, and axial length. The Benjamini-Hochberg Method was used to correct for multiple comparison. In multivariable models, glaucoma was associated with smaller applanation 1 time (P < 0.001, coefficient = -0.5865), applanation 2 time (P = 0.012, coefficient = -0.1702), radius (P = 0.006, coefficient = -0.5447), larger peak distance (P = 0.011, coefficient = 0.1023), deformation amplitude ratio at 1 mm (P < 0.001, coefficient = 0.072), and integrated radius (P < 0.001, coefficient = 1.094). These associations consistently indicate greater compliance of the cornea in glaucoma eyes. Untreated normal tension glaucoma eyes were more compliant than healthy eyes. The greater compliance (smaller stiffness) of normal tension glaucoma eyes may increase the risk of optic nerve damage. These results suggest the relevance of measuring biomechanical properties of glaucoma eyes.

Mohamed Benahmed - One of the best experts on this subject based on the ideXlab platform.

  • RNY-derived small RNAs as a signature of coronary artery disease.
    BMC medicine, 2015
    Co-Authors: Emanuela Repetto, Laeticia Lichtenstein, Zoheir Hizir, Nedra Tekaya, Mohamed Benahmed, Jean-bernard Ruidavets, Laure-emmanuelle Zaragosi, Bertrand Perret, Laura Bouchareychas, Annelise Genoux
    Abstract:

    Data from next generation sequencing technologies uncovered the existence of many classes of small RNAs. Recent studies reported that small RNAs are released by cells and can be detected in the blood. In this report, we aimed to discover the occurrence of novel circulating small RNAs in coronary artery disease (CAD). We used high-throughput sequencing of small RNAs from human and mouse apoptotic primary macrophages, and analyzed the data by empirical Bayes moderated t-statistics to assess differential expression and the Benjamini and Hochberg Method to control the false discovery rate. Results were then confirmed by Northern blot and RT-qPCR in foam cells and in two animal models for atherosclerosis, namely ApoE −/− and Ldlr −/− mouse lines. Quantitative RT-PCR to detect identified small RNAs, the RNY-derived small RNAs, was performed using sera of 263 patients with CAD compared to 514 matched healthy controls; the Student t-test was applied to statistically assess differences. Associations of small RNAs with clinical characteristics and biological markers were tested using Spearman’s rank correlations, while multivariate logistic regressions were performed to test the statistical association of small RNA levels with CAD. Here, we report that, in macrophages stimulated with pro-apoptotic or pro-atherogenic stimuli, the Ro-associated non-coding RNAs, called RNYs or Y-RNAs, are processed into small RNAs (~24–34 nt) referred to as small-RNYs (s-RNYs), including s-RNY1-5p processed from RNY1. A significant upregulation of s-RNY expression was found in aortic arches and blood plasma from ApoE −/− and Ldlr −/− mice and in serum from CAD patients (P

  • RNY-derived small RNAs as a signature of coronary artery disease
    BMC Medicine, 2015
    Co-Authors: Emanuela Repetto, Laeticia Lichtenstein, Zoheir Hizir, Nedra Tekaya, Mohamed Benahmed, Jean-bernard Ruidavets, Laure-emmanuelle Zaragosi, Bertrand Perret, Laura Bouchareychas, Annelise Genoux
    Abstract:

    Background Data from next generation sequencing technologies uncovered the existence of many classes of small RNAs. Recent studies reported that small RNAs are released by cells and can be detected in the blood. In this report, we aimed to discover the occurrence of novel circulating small RNAs in coronary artery disease (CAD). Methods We used high-throughput sequencing of small RNAs from human and mouse apoptotic primary macrophages, and analyzed the data by empirical Bayes moderated t-statistics to assess differential expression and the Benjamini and Hochberg Method to control the false discovery rate. Results were then confirmed by Northern blot and RT-qPCR in foam cells and in two animal models for atherosclerosis, namely ApoE −/− and Ldlr −/− mouse lines. Quantitative RT-PCR to detect identified small RNAs, the RNY-derived small RNAs, was performed using sera of 263 patients with CAD compared to 514 matched healthy controls; the Student t-test was applied to statistically assess differences. Associations of small RNAs with clinical characteristics and biological markers were tested using Spearman’s rank correlations, while multivariate logistic regressions were performed to test the statistical association of small RNA levels with CAD. Results Here, we report that, in macrophages stimulated with pro-apoptotic or pro-atherogenic stimuli, the Ro-associated non-coding RNAs, called RNYs or Y-RNAs, are processed into small RNAs (~24–34 nt) referred to as small-RNYs (s-RNYs), including s-RNY1-5p processed from RNY1. A significant upregulation of s-RNY expression was found in aortic arches and blood plasma from ApoE −/− and Ldlr −/− mice and in serum from CAD patients (P