Ileitis

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 360 Experts worldwide ranked by ideXlab platform

Markus M Heimesaat - One of the best experts on this subject based on the ideXlab platform.

  • Image_2_Multidrug-Resistant Pseudomonas aeruginosa Accelerate Intestinal, Extra-Intestinal, and Systemic Inflammatory Responses in Human Microbiota-Associated Mice With Subacute Ileitis.tiff
    2019
    Co-Authors: Markus M Heimesaat, Anja A Kuhl, Ulrike Escher, Anne Grunau, Stefan Bereswill
    Abstract:

    The globally rising incidences of multidrug-resistant (MDR) Pseudomonas aeruginosa (Psae) in humans and live-stock animals has prompted the World Health Organization to rate MDR Psae as serious threat for human health. Only little is known, however, regarding factors facilitating gastrointestinal Psae-acquisition by the vertebrate host and subsequently induced inflammatory sequelae. In the present study, we addressed whether subacute Ileitis predisposed mice harboring a human gut microbiota for intestinal MDR Psae carriage and whether inflammatory responses might be induced following peroral challenge with the opportunistic pathogen. To accomplish this, secondary abiotic mice were associated with a human gut microbiota by fecal microbiota transplantation. Ten days later (i.e., on day 0), subacute Ileitis was induced in human microbiota associated (hma) mice by peroral low-dose Toxoplasma gondii infection. On day 5 post-infection, mice were perorally challenged with 109 colony forming units of a clinical MDR Psae isolate by gavage and the fecal bacterial loads surveyed thereafter. Four days post-peroral challenge, only approximately one third of mice with a human gut microbiota and subacute Ileitis harbored the opportunistic pathogen in the intestinal tract. Notably, the gut microbiota composition was virtually unaffected by the Psae-carriage status during subacute Ileitis of hma mice. The Psae challenge resulted, however, in more pronounced intestinal epithelial apoptotic cell and T lymphocyte responses upon Ileitis induction that were not restricted to the ileum, but also affected the large intestines. Higher Psae-induced abundances of T cells could additionally be observed in extra-intestinal compartments including liver, kidney, lung, and heart of hma mice with subacute Ileitis. Furthermore, higher apoptotic cell numbers, but lower anti-inflammatory IL-10 concentrations were assessed in the liver of Psae as compared to mock treated mice with Ileitis. Remarkably, Psae-challenge was accompanied by even more pronounced systemic secretion of pro-inflammatory cytokines such as TNF and IL-6 at day 9 post Ileitis induction. In conclusion, whereas in one third of hma mice with subacute Ileitis Psae could be isolated from the intestines upon peroral challenge, the opportunistic pathogen was responsible for inflammatory sequelae in intestinal, extra-intestinal, and even systemic compartments and thus worsened subacute Ileitis outcome irrespective of the Psae-carrier status.

  • Pituitary Adenylate Cyclase-Activating Polypeptide—A Neuropeptide as Novel Treatment Option for Subacute Ileitis in Mice Harboring a Human Gut Microbiota
    Frontiers Media S.A., 2019
    Co-Authors: Stefan Bereswill, Ildiko R Dunay, Anja A Kuhl, Ulrike Escher, Anne Grunau, Andrea Tamas, Dora Reglodi, Markus M Heimesaat
    Abstract:

    The neuropeptide Pituitary adenylate cyclase-activating polypeptide (PACAP) is well-known for its important functions in immunity and inflammation. Data regarding anti-inflammatory properties of PACAP in the intestinal tract are limited, however. In our present preclinical intervention study we addressed whether PACAP treatment could alleviate experimental subacute Ileitis mimicking human gut microbiota conditions. Therefore, secondary abioitic mice were subjected to human fecal microbiota transplantation (FMT) and perorally infected with low-dose Toxoplasma gondii to induce subacute Ileitis on day 0. From day 3 until day 8 post-infection, mice were either treated with synthetic PACAP38 or placebo. At day 9 post-infection, placebo, but not PACAP treated mice exhibited overt macroscopic sequelae of intestinal immunopathology. PACAP treatment further resulted in less distinct apoptotic responses in ileal and colonic epithelia that were accompanied by lower T cell numbers in the mucosa and lamina propria and less secretion of pro-inflammatory cytokines in intestinal ex vivo biopsies. Notably, Ileitis-associated gut microbiota shifts were less distinct in PACAP as compared to placebo treated mice. Inflammation-ameliorating effects of PACAP were not restricted to the intestines, but could also be observed in extra-intestinal including systemic compartments as indicated by lower apoptotic cell counts and less pro-inflammatory cytokine secretion in liver and lungs taken from PACAP treated as compared to placebo control mice, which also held true for markedly lower serum TNF and IL-6 concentrations in the former as compared to the latter. Our preclinical intervention study provides strong evidence that synthetic PACAP alleviates subacute Ileitis and extra-intestinal including systemic sequelae of T cell-driven immunopathology. These findings further support PACAP as a novel treatment option for intestinal inflammation including inflammatory bowel diseases (IBD)

  • Image_4_Pituitary Adenylate Cyclase-Activating Polypeptide—A Neuropeptide as Novel Treatment Option for Subacute Ileitis in Mice Harboring a Human Gut Microbiota.pdf
    2019
    Co-Authors: Stefan Bereswill, Ildiko R Dunay, Anja A Kuhl, Ulrike Escher, Anne Grunau, Andrea Tamas, Dora Reglodi, Markus M Heimesaat
    Abstract:

    The neuropeptide Pituitary adenylate cyclase-activating polypeptide (PACAP) is well-known for its important functions in immunity and inflammation. Data regarding anti-inflammatory properties of PACAP in the intestinal tract are limited, however. In our present preclinical intervention study we addressed whether PACAP treatment could alleviate experimental subacute Ileitis mimicking human gut microbiota conditions. Therefore, secondary abioitic mice were subjected to human fecal microbiota transplantation (FMT) and perorally infected with low-dose Toxoplasma gondii to induce subacute Ileitis on day 0. From day 3 until day 8 post-infection, mice were either treated with synthetic PACAP38 or placebo. At day 9 post-infection, placebo, but not PACAP treated mice exhibited overt macroscopic sequelae of intestinal immunopathology. PACAP treatment further resulted in less distinct apoptotic responses in ileal and colonic epithelia that were accompanied by lower T cell numbers in the mucosa and lamina propria and less secretion of pro-inflammatory cytokines in intestinal ex vivo biopsies. Notably, Ileitis-associated gut microbiota shifts were less distinct in PACAP as compared to placebo treated mice. Inflammation-ameliorating effects of PACAP were not restricted to the intestines, but could also be observed in extra-intestinal including systemic compartments as indicated by lower apoptotic cell counts and less pro-inflammatory cytokine secretion in liver and lungs taken from PACAP treated as compared to placebo control mice, which also held true for markedly lower serum TNF and IL-6 concentrations in the former as compared to the latter. Our preclinical intervention study provides strong evidence that synthetic PACAP alleviates subacute Ileitis and extra-intestinal including systemic sequelae of T cell-driven immunopathology. These findings further support PACAP as a novel treatment option for intestinal inflammation including inflammatory bowel diseases (IBD).

  • Image_1_Comprehensive Kinetic Survey of Intestinal, Extra-Intestinal and Systemic Sequelae of Murine Ileitis Following Peroral Low-Dose Toxoplasma gondii Infection.TIFF
    2019
    Co-Authors: Markus M Heimesaat, Ildiko R Dunay, Stefan Bereswill
    Abstract:

    We have recently shown that following peroral low-dose Toxoplasma gondii infection susceptible mice develop subacute Ileitis within 10 days. Data regarding long-term intestinal and extra-intestinal sequelae of infection are scarce, however. We therefore challenged conventional C57BL/6 mice with one cyst of T. gondii ME49 strain by gavage and performed a comprehensive immunopathological survey 10, 36, and 57 days later. As early as 10 days post-infection, mice were suffering from subacute Ileitis as indicated by mild-to-moderate histopathological changes of the ileal mucosa. Furthermore, numbers of apoptotic and proliferating/regenerating epithelial cells as well as of T and B lymphocytes in the mucosa and lamina propria of the ileum were highest at day 10 post-infection, but declined thereafter, and were accompanied by enhanced pro-inflammatory mediator secretion in ileum, colon and mesenteric lymph nodes that was most pronounced during the early phase of infection. In addition, subacute Ileitis was accompanied by distinct shifts in the commensal gut microbiota composition in the small intestines. Remarkably, immunopathological sequelae of T. gondii infection were not restricted to the intestines, but could also be observed in extra-intestinal tissues including the liver, kidneys, lungs, heart and strikingly, in systemic compartments that were most prominent at day 10 post-infection. We conclude that the here provided long-term kinetic survey of immunopathological sequalae following peroral low-dose T. gondii infection provides valuable corner stones for a better understanding of the complex interactions within the triangle relationship of (parasitic) pathogens, the host immunity and the commensal gut microbiota during intestinal inflammation. The low-dose T. gondii infection model may be applied as valuable gut inflammation model in future pre-clinical studies in order to test potential treatment options for intestinal inflammatory conditions in humans.

  • Data_Sheet_3_Comprehensive Kinetic Survey of Intestinal, Extra-Intestinal and Systemic Sequelae of Murine Ileitis Following Peroral Low-Dose Toxoplasma gondii Infection.PDF
    2019
    Co-Authors: Markus M Heimesaat, Ildiko R Dunay, Stefan Bereswill
    Abstract:

    We have recently shown that following peroral low-dose Toxoplasma gondii infection susceptible mice develop subacute Ileitis within 10 days. Data regarding long-term intestinal and extra-intestinal sequelae of infection are scarce, however. We therefore challenged conventional C57BL/6 mice with one cyst of T. gondii ME49 strain by gavage and performed a comprehensive immunopathological survey 10, 36, and 57 days later. As early as 10 days post-infection, mice were suffering from subacute Ileitis as indicated by mild-to-moderate histopathological changes of the ileal mucosa. Furthermore, numbers of apoptotic and proliferating/regenerating epithelial cells as well as of T and B lymphocytes in the mucosa and lamina propria of the ileum were highest at day 10 post-infection, but declined thereafter, and were accompanied by enhanced pro-inflammatory mediator secretion in ileum, colon and mesenteric lymph nodes that was most pronounced during the early phase of infection. In addition, subacute Ileitis was accompanied by distinct shifts in the commensal gut microbiota composition in the small intestines. Remarkably, immunopathological sequelae of T. gondii infection were not restricted to the intestines, but could also be observed in extra-intestinal tissues including the liver, kidneys, lungs, heart and strikingly, in systemic compartments that were most prominent at day 10 post-infection. We conclude that the here provided long-term kinetic survey of immunopathological sequalae following peroral low-dose T. gondii infection provides valuable corner stones for a better understanding of the complex interactions within the triangle relationship of (parasitic) pathogens, the host immunity and the commensal gut microbiota during intestinal inflammation. The low-dose T. gondii infection model may be applied as valuable gut inflammation model in future pre-clinical studies in order to test potential treatment options for intestinal inflammatory conditions in humans.

Fabio Cominelli - One of the best experts on this subject based on the ideXlab platform.

  • death domain receptor 3 deletion normalizes inflammatory gene expression and prevents Ileitis in experimental crohn s disease
    Inflammatory Bowel Diseases, 2019
    Co-Authors: Ludovica F Butto, Li Guo Jia, Theresa T. Pizarro, Kristen O Arseneau, Hiroshi Tamagawa, Alexander Rodriguezpalacios, Carlo De Salvo, Giorgos Bamias, Fabio Cominelli
    Abstract:

    Background TNF-like cytokine 1A (TL1A) and its functional receptor, death-domain-receptor-3 (DR3), are multifunctional mediators of effector and regulatory immunity. We aimed to evaluate the functional role and therapeutic potential of TL1A/DR3 signaling in Crohn's disease-like Ileitis. Methods Ileitis-prone SAMP1/YitFc (SAMP) and TNFΔARE/+ mice were rendered deficient for DR3 or TL1A by microsatellite marker-assisted backcrossing. Pathological and immunological characteristics were compared between control and knockout mice, and mucosal immunophenotype was analyzed by Nanostring microarray assay. The therapeutic effect of pharmacological TL1A neutralization was also investigated. Results DR3 deficiency was associated with restoration of a homeostatic mucosal immunostat in SAMP mice through the regulation of several pro- and anti-inflammatory genes. This led to suppression of effector immunity, amelioration of Ileitis severity, and compromised ability of either unfractionated CD4+ or CD4+CD45RBhi mucosal lymphocytes to transfer Ileitis to severe combined immunodeficient mice recipients. TNF-driven Ileitis was also prevented in TNFΔARE/+xDR3-/- mice, in association with decreased expression of the pro-inflammatory cytokines TNF and IFN-γ. In contrast to DR3, TL1A was dispensable for the development of Ileitis although it affected the kinetics of inflammation, as TNFΔARE/+xTL1A-/- demonstrated delayed onset of inflammation, whereas administration of a neutralizing, anti-TL1A antibody ameliorated early but not late TNFΔARE/+ Ileitis. Conclusion We found a prominent pro-inflammatory role of DR3 in chronic Ileitis, which is only partially mediated via interaction with TL1A, raising the possibility for additional DR3 ligands. Death-domain-receptor-3 appears to be a master regulator of mucosal homeostasis and inflammation and may represent a candidate therapeutic target for chronic inflammatory conditions of the bowel.

  • genetic deletion of the bacterial sensor nod2 improves murine crohn s disease like Ileitis independent of functional dysbiosis
    Mucosal Immunology, 2017
    Co-Authors: Daniele Corridoni, Theresa T. Pizarro, Kristen O Arseneau, Alexander Rodriguezpalacios, G Di Stefano, L Di Martino, Dionysios A Antonopoulos, Eugene B Chang, Fabio Cominelli
    Abstract:

    Although genetic polymorphisms in NOD2 (nucleotide-binding oligomerization domain-containing 2) have been associated with the pathogenesis of Crohn's disease (CD), little is known regarding the role of wild-type (WT) NOD2 in the gut. To date, most murine studies addressing the role of WT Nod2 have been conducted using healthy (Ileitis/colitis-free) mouse strains. Here, we evaluated the effects of Nod2 deletion in a murine model of spontaneous Ileitis, i.e., the SAMP1Yit/Fc (SAMP) strain, which closely resembles CD. Remarkably, Nod2 deletion improved both chronic cobblestone Ileitis (by 50% assessed, as the % of abnormal mucosa at 24 wks of age), as well as acute dextran sodium sulfate (DSS) colitis. Mechanistically, Th2 cytokine production and Th2-transcription factor activation (i.e., STAT6 phosphorylation) were reduced. Microbiologically, the effects of Nod2 deletion appeared independent of fecal microbiota composition and function, assessed by 16S rRNA and metatranscriptomics. Our findings indicate that pharmacological blockade of NOD2 signaling in humans could improve health in Th2-driven chronic intestinal inflammation.

  • uncovering pathogenic mechanisms of inflammatory bowel disease using mouse models of crohn s disease like Ileitis what is the right model
    Cellular and molecular gastroenterology and hepatology, 2017
    Co-Authors: Fabio Cominelli, Kristen O Arseneau, Alexander Rodriguezpalacios, Theresa T. Pizarro
    Abstract:

    Crohn’s disease and ulcerative colitis, together known as inflammatory bowel disease, are debilitating chronic disorders of unknown cause and cure. Our evolving understanding of these pathologies is enhanced greatly by the use of animal models of intestinal inflammation that allow in vivo mechanistic studies, preclinical evaluation of new therapies, and investigation into the causative factors that underlie disease pathogenesis. Several animal models, most commonly generated in mice, exist for the study of colitis. The appropriateness of their use often can be determined by their mode of generation (ie, chemical induction, T-cell transfer, targeted genetic manipulation, spontaneously occurring, and so forth), the type of investigation (mechanistic studies, pathogenic experiments, preclinical evaluations, and so forth), and the type of inflammation that occurs in the model (acute vs chronic colitis, tissue injury/repair, and so forth). Although most murine models of inflammatory bowel disease develop inflammation in the colon, Crohn’s disease most commonly occurs in the terminal ileum, where a very limited number of mouse models manifest disease. This review discusses appropriate experimental applications for different mouse models of colitis, and highlights the particular utility of 2 highly relevant models of Crohn’s-like Ileitis—the spontaneous SAMP1/YitFc inbred mouse strain and the genetically engineered TnfΔAU-rich element/+ mouse model of tumor necrosis factor overexpression, both of which bear strong resemblance to the human condition. Similar to patients with Crohn’s disease, SAMP1/YitFc Ileitis develops spontaneously, without chemical, genetic, or immunologic manipulation, making this model particularly relevant for studies aimed at identifying the primary defect underlying the occurrence of Crohn’s Ileitis, as well as preclinical testing of novel treatment modalities.

  • Epithelial-specific Toll-like Receptor (TLR)5 Activation Mediates Barrier Dysfunction in Experimental Ileitis.
    Inflammatory bowel diseases, 2017
    Co-Authors: Loris Riccardo Lopetuso, Ruo Jia, X.m. Wang, Li Guo Jia, Valentina Petito, Wendy A. Goodman, Jon Meddings, Fabio Cominelli, Brian K. Reuter, Theresa T. Pizarro
    Abstract:

    BACKGROUND A large body of evidence supports a central role of TLR5 and its natural ligand, flagellin, in Crohn's disease (CD), with the precise mechanism(s) still unresolved. METHODS We investigated the role of flagellin/TLR5 in SAMP1/YitFc (SAMP) mice, a spontaneous model of Crohn's disease-like Ileitis. RESULTS Ileal Tlr5 and serum antiflagellin IgG antibodies were increased in SAMP before the onset of inflammation and during established disease; these trends were abrogated in the absence of colonizing commensal bacteria. Irradiated SAMP receiving either wild-type (AKR) or SAMP bone marrow (BM) developed severe Ileitis and displayed increased ileal Tlr5 compared with AKR recipients of either SAMP or AKR bone marrow, neither of which conferred Ileitis, suggesting that elevated TLR5 in native SAMP is derived primarily from a nonhematopoietic (e.g., epithelial) source. Indeed, ileal epithelial TLR5 in preinflamed SAMP was increased compared with age-matched AKR and germ-free SAMP. TLR5-specific ex vivo activation of SAMP ileal tissues decreased epithelial barrier resistance, indicative of increased permeability, and was accompanied by altered expression of the tight junction proteins, claudin-3, occludin, and zonula occludens-1. CONCLUSIONS Our results provide evidence that aberrant, elevated TLR5 expression is present in the ileal epithelium of SAMP mice, is augmented in the presence of the gut microbiome, and that TLR5 activation in response to bacterial flagellin results in a deficiency to maintain appropriate epithelial barrier integrity. Together, these findings represent a potential mechanistic pathway leading to the exacerbation and perpetuation of chronic gut inflammation in experimental Ileitis and possibly, in patients with Crohn's disease.

  • samp1 yitfc mice develop Ileitis via loss of ccl21 and defects in dendritic cell migration
    Gastroenterology, 2015
    Co-Authors: Zbigniew Mikulski, Wendy A. Goodman, Fabio Cominelli, Theresa T. Pizarro, Rebecca L Johnson, Iftach Shaked, Gisen Kim, Heba Nowyhed, Grzegorz Chodaczek, Klaus Ley
    Abstract:

    Background & Aims The lymphatic chemokine CCL21 is required for dendritic cell (DC) migration from tissues to lymph nodes, which helps establish tolerance to foreign yet harmless antigens. We demonstrate that CCL21 is almost completely absent from SAMP1/YitFc (SAMP) mice, which spontaneously develop chronic Ileitis that resembles Crohn's disease, and that DC migration is severely impaired in these mice compared with AKR mice (controls). Toll-like receptor agonists like the Toll-like receptor 7 agonist R848 induce DC maturation and mobilization. Methods We collected intestinal and other tissues and mesenteric lymph nodes (MLN) from SAMP mice. Expression of CCL21 was measured by quantitative reverse transcription polymerase chain reaction and immunofluorescence analyses; spontaneous and induced migration of DCs were assessed by flow cytometry. We analyzed production of retinoic acid by DCs and their ability to induce development of regulatory T cells. Mice were fed R848 to determine its effects on migration of DCs and development of Ileitis in SAMP mice. Results SAMP mice expressed almost no CCL21 in any tissue tested. Their CD11b + CD103 + DCs were defective in migration from the ileal lamina propria to the MLN. DCs from SAMP mice also had a greatly reduced ability to produce retinoic acid and induce development of regulatory T cells compared with control mice. Young SAMP mice had reduced CCL21 expression and decreased DC migration before developing Ileitis. Administration of R848 to adult SAMP mice increased migration of DC to the MLN and development of regulatory T cells there, and reduced the severity of Ileitis. Conclusions Loss of CCL21 signaling and DC migration is required for development of Ileitis in SAMP mice. Reagents such as R848, which activate DC migration to the MLN, may be developed as treatments for patients with Crohn's disease.

Stefan Bereswill - One of the best experts on this subject based on the ideXlab platform.

  • Image_2_Multidrug-Resistant Pseudomonas aeruginosa Accelerate Intestinal, Extra-Intestinal, and Systemic Inflammatory Responses in Human Microbiota-Associated Mice With Subacute Ileitis.tiff
    2019
    Co-Authors: Markus M Heimesaat, Anja A Kuhl, Ulrike Escher, Anne Grunau, Stefan Bereswill
    Abstract:

    The globally rising incidences of multidrug-resistant (MDR) Pseudomonas aeruginosa (Psae) in humans and live-stock animals has prompted the World Health Organization to rate MDR Psae as serious threat for human health. Only little is known, however, regarding factors facilitating gastrointestinal Psae-acquisition by the vertebrate host and subsequently induced inflammatory sequelae. In the present study, we addressed whether subacute Ileitis predisposed mice harboring a human gut microbiota for intestinal MDR Psae carriage and whether inflammatory responses might be induced following peroral challenge with the opportunistic pathogen. To accomplish this, secondary abiotic mice were associated with a human gut microbiota by fecal microbiota transplantation. Ten days later (i.e., on day 0), subacute Ileitis was induced in human microbiota associated (hma) mice by peroral low-dose Toxoplasma gondii infection. On day 5 post-infection, mice were perorally challenged with 109 colony forming units of a clinical MDR Psae isolate by gavage and the fecal bacterial loads surveyed thereafter. Four days post-peroral challenge, only approximately one third of mice with a human gut microbiota and subacute Ileitis harbored the opportunistic pathogen in the intestinal tract. Notably, the gut microbiota composition was virtually unaffected by the Psae-carriage status during subacute Ileitis of hma mice. The Psae challenge resulted, however, in more pronounced intestinal epithelial apoptotic cell and T lymphocyte responses upon Ileitis induction that were not restricted to the ileum, but also affected the large intestines. Higher Psae-induced abundances of T cells could additionally be observed in extra-intestinal compartments including liver, kidney, lung, and heart of hma mice with subacute Ileitis. Furthermore, higher apoptotic cell numbers, but lower anti-inflammatory IL-10 concentrations were assessed in the liver of Psae as compared to mock treated mice with Ileitis. Remarkably, Psae-challenge was accompanied by even more pronounced systemic secretion of pro-inflammatory cytokines such as TNF and IL-6 at day 9 post Ileitis induction. In conclusion, whereas in one third of hma mice with subacute Ileitis Psae could be isolated from the intestines upon peroral challenge, the opportunistic pathogen was responsible for inflammatory sequelae in intestinal, extra-intestinal, and even systemic compartments and thus worsened subacute Ileitis outcome irrespective of the Psae-carrier status.

  • Pituitary Adenylate Cyclase-Activating Polypeptide—A Neuropeptide as Novel Treatment Option for Subacute Ileitis in Mice Harboring a Human Gut Microbiota
    Frontiers Media S.A., 2019
    Co-Authors: Stefan Bereswill, Ildiko R Dunay, Anja A Kuhl, Ulrike Escher, Anne Grunau, Andrea Tamas, Dora Reglodi, Markus M Heimesaat
    Abstract:

    The neuropeptide Pituitary adenylate cyclase-activating polypeptide (PACAP) is well-known for its important functions in immunity and inflammation. Data regarding anti-inflammatory properties of PACAP in the intestinal tract are limited, however. In our present preclinical intervention study we addressed whether PACAP treatment could alleviate experimental subacute Ileitis mimicking human gut microbiota conditions. Therefore, secondary abioitic mice were subjected to human fecal microbiota transplantation (FMT) and perorally infected with low-dose Toxoplasma gondii to induce subacute Ileitis on day 0. From day 3 until day 8 post-infection, mice were either treated with synthetic PACAP38 or placebo. At day 9 post-infection, placebo, but not PACAP treated mice exhibited overt macroscopic sequelae of intestinal immunopathology. PACAP treatment further resulted in less distinct apoptotic responses in ileal and colonic epithelia that were accompanied by lower T cell numbers in the mucosa and lamina propria and less secretion of pro-inflammatory cytokines in intestinal ex vivo biopsies. Notably, Ileitis-associated gut microbiota shifts were less distinct in PACAP as compared to placebo treated mice. Inflammation-ameliorating effects of PACAP were not restricted to the intestines, but could also be observed in extra-intestinal including systemic compartments as indicated by lower apoptotic cell counts and less pro-inflammatory cytokine secretion in liver and lungs taken from PACAP treated as compared to placebo control mice, which also held true for markedly lower serum TNF and IL-6 concentrations in the former as compared to the latter. Our preclinical intervention study provides strong evidence that synthetic PACAP alleviates subacute Ileitis and extra-intestinal including systemic sequelae of T cell-driven immunopathology. These findings further support PACAP as a novel treatment option for intestinal inflammation including inflammatory bowel diseases (IBD)

  • Image_4_Pituitary Adenylate Cyclase-Activating Polypeptide—A Neuropeptide as Novel Treatment Option for Subacute Ileitis in Mice Harboring a Human Gut Microbiota.pdf
    2019
    Co-Authors: Stefan Bereswill, Ildiko R Dunay, Anja A Kuhl, Ulrike Escher, Anne Grunau, Andrea Tamas, Dora Reglodi, Markus M Heimesaat
    Abstract:

    The neuropeptide Pituitary adenylate cyclase-activating polypeptide (PACAP) is well-known for its important functions in immunity and inflammation. Data regarding anti-inflammatory properties of PACAP in the intestinal tract are limited, however. In our present preclinical intervention study we addressed whether PACAP treatment could alleviate experimental subacute Ileitis mimicking human gut microbiota conditions. Therefore, secondary abioitic mice were subjected to human fecal microbiota transplantation (FMT) and perorally infected with low-dose Toxoplasma gondii to induce subacute Ileitis on day 0. From day 3 until day 8 post-infection, mice were either treated with synthetic PACAP38 or placebo. At day 9 post-infection, placebo, but not PACAP treated mice exhibited overt macroscopic sequelae of intestinal immunopathology. PACAP treatment further resulted in less distinct apoptotic responses in ileal and colonic epithelia that were accompanied by lower T cell numbers in the mucosa and lamina propria and less secretion of pro-inflammatory cytokines in intestinal ex vivo biopsies. Notably, Ileitis-associated gut microbiota shifts were less distinct in PACAP as compared to placebo treated mice. Inflammation-ameliorating effects of PACAP were not restricted to the intestines, but could also be observed in extra-intestinal including systemic compartments as indicated by lower apoptotic cell counts and less pro-inflammatory cytokine secretion in liver and lungs taken from PACAP treated as compared to placebo control mice, which also held true for markedly lower serum TNF and IL-6 concentrations in the former as compared to the latter. Our preclinical intervention study provides strong evidence that synthetic PACAP alleviates subacute Ileitis and extra-intestinal including systemic sequelae of T cell-driven immunopathology. These findings further support PACAP as a novel treatment option for intestinal inflammation including inflammatory bowel diseases (IBD).

  • Image_1_Comprehensive Kinetic Survey of Intestinal, Extra-Intestinal and Systemic Sequelae of Murine Ileitis Following Peroral Low-Dose Toxoplasma gondii Infection.TIFF
    2019
    Co-Authors: Markus M Heimesaat, Ildiko R Dunay, Stefan Bereswill
    Abstract:

    We have recently shown that following peroral low-dose Toxoplasma gondii infection susceptible mice develop subacute Ileitis within 10 days. Data regarding long-term intestinal and extra-intestinal sequelae of infection are scarce, however. We therefore challenged conventional C57BL/6 mice with one cyst of T. gondii ME49 strain by gavage and performed a comprehensive immunopathological survey 10, 36, and 57 days later. As early as 10 days post-infection, mice were suffering from subacute Ileitis as indicated by mild-to-moderate histopathological changes of the ileal mucosa. Furthermore, numbers of apoptotic and proliferating/regenerating epithelial cells as well as of T and B lymphocytes in the mucosa and lamina propria of the ileum were highest at day 10 post-infection, but declined thereafter, and were accompanied by enhanced pro-inflammatory mediator secretion in ileum, colon and mesenteric lymph nodes that was most pronounced during the early phase of infection. In addition, subacute Ileitis was accompanied by distinct shifts in the commensal gut microbiota composition in the small intestines. Remarkably, immunopathological sequelae of T. gondii infection were not restricted to the intestines, but could also be observed in extra-intestinal tissues including the liver, kidneys, lungs, heart and strikingly, in systemic compartments that were most prominent at day 10 post-infection. We conclude that the here provided long-term kinetic survey of immunopathological sequalae following peroral low-dose T. gondii infection provides valuable corner stones for a better understanding of the complex interactions within the triangle relationship of (parasitic) pathogens, the host immunity and the commensal gut microbiota during intestinal inflammation. The low-dose T. gondii infection model may be applied as valuable gut inflammation model in future pre-clinical studies in order to test potential treatment options for intestinal inflammatory conditions in humans.

  • Data_Sheet_3_Comprehensive Kinetic Survey of Intestinal, Extra-Intestinal and Systemic Sequelae of Murine Ileitis Following Peroral Low-Dose Toxoplasma gondii Infection.PDF
    2019
    Co-Authors: Markus M Heimesaat, Ildiko R Dunay, Stefan Bereswill
    Abstract:

    We have recently shown that following peroral low-dose Toxoplasma gondii infection susceptible mice develop subacute Ileitis within 10 days. Data regarding long-term intestinal and extra-intestinal sequelae of infection are scarce, however. We therefore challenged conventional C57BL/6 mice with one cyst of T. gondii ME49 strain by gavage and performed a comprehensive immunopathological survey 10, 36, and 57 days later. As early as 10 days post-infection, mice were suffering from subacute Ileitis as indicated by mild-to-moderate histopathological changes of the ileal mucosa. Furthermore, numbers of apoptotic and proliferating/regenerating epithelial cells as well as of T and B lymphocytes in the mucosa and lamina propria of the ileum were highest at day 10 post-infection, but declined thereafter, and were accompanied by enhanced pro-inflammatory mediator secretion in ileum, colon and mesenteric lymph nodes that was most pronounced during the early phase of infection. In addition, subacute Ileitis was accompanied by distinct shifts in the commensal gut microbiota composition in the small intestines. Remarkably, immunopathological sequelae of T. gondii infection were not restricted to the intestines, but could also be observed in extra-intestinal tissues including the liver, kidneys, lungs, heart and strikingly, in systemic compartments that were most prominent at day 10 post-infection. We conclude that the here provided long-term kinetic survey of immunopathological sequalae following peroral low-dose T. gondii infection provides valuable corner stones for a better understanding of the complex interactions within the triangle relationship of (parasitic) pathogens, the host immunity and the commensal gut microbiota during intestinal inflammation. The low-dose T. gondii infection model may be applied as valuable gut inflammation model in future pre-clinical studies in order to test potential treatment options for intestinal inflammatory conditions in humans.

Ildiko R Dunay - One of the best experts on this subject based on the ideXlab platform.

  • Pituitary Adenylate Cyclase-Activating Polypeptide—A Neuropeptide as Novel Treatment Option for Subacute Ileitis in Mice Harboring a Human Gut Microbiota
    Frontiers Media S.A., 2019
    Co-Authors: Stefan Bereswill, Ildiko R Dunay, Anja A Kuhl, Ulrike Escher, Anne Grunau, Andrea Tamas, Dora Reglodi, Markus M Heimesaat
    Abstract:

    The neuropeptide Pituitary adenylate cyclase-activating polypeptide (PACAP) is well-known for its important functions in immunity and inflammation. Data regarding anti-inflammatory properties of PACAP in the intestinal tract are limited, however. In our present preclinical intervention study we addressed whether PACAP treatment could alleviate experimental subacute Ileitis mimicking human gut microbiota conditions. Therefore, secondary abioitic mice were subjected to human fecal microbiota transplantation (FMT) and perorally infected with low-dose Toxoplasma gondii to induce subacute Ileitis on day 0. From day 3 until day 8 post-infection, mice were either treated with synthetic PACAP38 or placebo. At day 9 post-infection, placebo, but not PACAP treated mice exhibited overt macroscopic sequelae of intestinal immunopathology. PACAP treatment further resulted in less distinct apoptotic responses in ileal and colonic epithelia that were accompanied by lower T cell numbers in the mucosa and lamina propria and less secretion of pro-inflammatory cytokines in intestinal ex vivo biopsies. Notably, Ileitis-associated gut microbiota shifts were less distinct in PACAP as compared to placebo treated mice. Inflammation-ameliorating effects of PACAP were not restricted to the intestines, but could also be observed in extra-intestinal including systemic compartments as indicated by lower apoptotic cell counts and less pro-inflammatory cytokine secretion in liver and lungs taken from PACAP treated as compared to placebo control mice, which also held true for markedly lower serum TNF and IL-6 concentrations in the former as compared to the latter. Our preclinical intervention study provides strong evidence that synthetic PACAP alleviates subacute Ileitis and extra-intestinal including systemic sequelae of T cell-driven immunopathology. These findings further support PACAP as a novel treatment option for intestinal inflammation including inflammatory bowel diseases (IBD)

  • Image_4_Pituitary Adenylate Cyclase-Activating Polypeptide—A Neuropeptide as Novel Treatment Option for Subacute Ileitis in Mice Harboring a Human Gut Microbiota.pdf
    2019
    Co-Authors: Stefan Bereswill, Ildiko R Dunay, Anja A Kuhl, Ulrike Escher, Anne Grunau, Andrea Tamas, Dora Reglodi, Markus M Heimesaat
    Abstract:

    The neuropeptide Pituitary adenylate cyclase-activating polypeptide (PACAP) is well-known for its important functions in immunity and inflammation. Data regarding anti-inflammatory properties of PACAP in the intestinal tract are limited, however. In our present preclinical intervention study we addressed whether PACAP treatment could alleviate experimental subacute Ileitis mimicking human gut microbiota conditions. Therefore, secondary abioitic mice were subjected to human fecal microbiota transplantation (FMT) and perorally infected with low-dose Toxoplasma gondii to induce subacute Ileitis on day 0. From day 3 until day 8 post-infection, mice were either treated with synthetic PACAP38 or placebo. At day 9 post-infection, placebo, but not PACAP treated mice exhibited overt macroscopic sequelae of intestinal immunopathology. PACAP treatment further resulted in less distinct apoptotic responses in ileal and colonic epithelia that were accompanied by lower T cell numbers in the mucosa and lamina propria and less secretion of pro-inflammatory cytokines in intestinal ex vivo biopsies. Notably, Ileitis-associated gut microbiota shifts were less distinct in PACAP as compared to placebo treated mice. Inflammation-ameliorating effects of PACAP were not restricted to the intestines, but could also be observed in extra-intestinal including systemic compartments as indicated by lower apoptotic cell counts and less pro-inflammatory cytokine secretion in liver and lungs taken from PACAP treated as compared to placebo control mice, which also held true for markedly lower serum TNF and IL-6 concentrations in the former as compared to the latter. Our preclinical intervention study provides strong evidence that synthetic PACAP alleviates subacute Ileitis and extra-intestinal including systemic sequelae of T cell-driven immunopathology. These findings further support PACAP as a novel treatment option for intestinal inflammation including inflammatory bowel diseases (IBD).

  • Image_1_Comprehensive Kinetic Survey of Intestinal, Extra-Intestinal and Systemic Sequelae of Murine Ileitis Following Peroral Low-Dose Toxoplasma gondii Infection.TIFF
    2019
    Co-Authors: Markus M Heimesaat, Ildiko R Dunay, Stefan Bereswill
    Abstract:

    We have recently shown that following peroral low-dose Toxoplasma gondii infection susceptible mice develop subacute Ileitis within 10 days. Data regarding long-term intestinal and extra-intestinal sequelae of infection are scarce, however. We therefore challenged conventional C57BL/6 mice with one cyst of T. gondii ME49 strain by gavage and performed a comprehensive immunopathological survey 10, 36, and 57 days later. As early as 10 days post-infection, mice were suffering from subacute Ileitis as indicated by mild-to-moderate histopathological changes of the ileal mucosa. Furthermore, numbers of apoptotic and proliferating/regenerating epithelial cells as well as of T and B lymphocytes in the mucosa and lamina propria of the ileum were highest at day 10 post-infection, but declined thereafter, and were accompanied by enhanced pro-inflammatory mediator secretion in ileum, colon and mesenteric lymph nodes that was most pronounced during the early phase of infection. In addition, subacute Ileitis was accompanied by distinct shifts in the commensal gut microbiota composition in the small intestines. Remarkably, immunopathological sequelae of T. gondii infection were not restricted to the intestines, but could also be observed in extra-intestinal tissues including the liver, kidneys, lungs, heart and strikingly, in systemic compartments that were most prominent at day 10 post-infection. We conclude that the here provided long-term kinetic survey of immunopathological sequalae following peroral low-dose T. gondii infection provides valuable corner stones for a better understanding of the complex interactions within the triangle relationship of (parasitic) pathogens, the host immunity and the commensal gut microbiota during intestinal inflammation. The low-dose T. gondii infection model may be applied as valuable gut inflammation model in future pre-clinical studies in order to test potential treatment options for intestinal inflammatory conditions in humans.

  • Data_Sheet_3_Comprehensive Kinetic Survey of Intestinal, Extra-Intestinal and Systemic Sequelae of Murine Ileitis Following Peroral Low-Dose Toxoplasma gondii Infection.PDF
    2019
    Co-Authors: Markus M Heimesaat, Ildiko R Dunay, Stefan Bereswill
    Abstract:

    We have recently shown that following peroral low-dose Toxoplasma gondii infection susceptible mice develop subacute Ileitis within 10 days. Data regarding long-term intestinal and extra-intestinal sequelae of infection are scarce, however. We therefore challenged conventional C57BL/6 mice with one cyst of T. gondii ME49 strain by gavage and performed a comprehensive immunopathological survey 10, 36, and 57 days later. As early as 10 days post-infection, mice were suffering from subacute Ileitis as indicated by mild-to-moderate histopathological changes of the ileal mucosa. Furthermore, numbers of apoptotic and proliferating/regenerating epithelial cells as well as of T and B lymphocytes in the mucosa and lamina propria of the ileum were highest at day 10 post-infection, but declined thereafter, and were accompanied by enhanced pro-inflammatory mediator secretion in ileum, colon and mesenteric lymph nodes that was most pronounced during the early phase of infection. In addition, subacute Ileitis was accompanied by distinct shifts in the commensal gut microbiota composition in the small intestines. Remarkably, immunopathological sequelae of T. gondii infection were not restricted to the intestines, but could also be observed in extra-intestinal tissues including the liver, kidneys, lungs, heart and strikingly, in systemic compartments that were most prominent at day 10 post-infection. We conclude that the here provided long-term kinetic survey of immunopathological sequalae following peroral low-dose T. gondii infection provides valuable corner stones for a better understanding of the complex interactions within the triangle relationship of (parasitic) pathogens, the host immunity and the commensal gut microbiota during intestinal inflammation. The low-dose T. gondii infection model may be applied as valuable gut inflammation model in future pre-clinical studies in order to test potential treatment options for intestinal inflammatory conditions in humans.

  • anti inflammatory effects of the octapeptide nap in human microbiota associated mice suffering from subacute Ileitis
    European journal of microbiology and immunology, 2018
    Co-Authors: Ulrike Escher, Stefan Bereswill, Ildiko R Dunay, Eliezer Giladi, Illana Gozes, Markus M Heimesaat
    Abstract:

    The octapeptide NAP is well known for its neuroprotective properties. We here investigated whether NAP treatment could alleviate pro-inflammatory immune responses during experimental subacute Ileitis. To address this, mice with a human gut microbiota were perorally infected with one cyst of Toxoplasma gondii (day 0) and subjected to intraperitoneal synthetic NAP treatment from day 1 until day 8 postinfection (p.i.). Whereas placebo (PLC) control animals displayed subacute Ileitis at day 9 p.i., NAP-treated mice exhibited less pronounced pro-inflammatory immune responses as indicated by lower numbers of intestinal mucosal T and B lymphocytes and lower interferon (IFN)-γ concentrations in mesenteric lymph nodes. The NAP-induced anti-inflammatory effects were not restricted to the intestinal tract but could also be observed in extra-intestinal including systemic compartments, given that pro-inflammatory cytokines were lower in liver, kidney, and lung following NAP as compared to PLC application, whereas at day 9 p.i., colonic and serum interleukin (IL)-10 concentrations were higher in the former as compared to the latter. Remarkably, probiotic commensal bifidobacterial loads were higher in the ileal lumen of NAP as compared to PLC-treated mice with Ileitis. Our findings thus further support that NAP might be regarded as future treatment option directed against intestinal inflammation.

Theresa T. Pizarro - One of the best experts on this subject based on the ideXlab platform.

  • death domain receptor 3 deletion normalizes inflammatory gene expression and prevents Ileitis in experimental crohn s disease
    Inflammatory Bowel Diseases, 2019
    Co-Authors: Ludovica F Butto, Li Guo Jia, Theresa T. Pizarro, Kristen O Arseneau, Hiroshi Tamagawa, Alexander Rodriguezpalacios, Carlo De Salvo, Giorgos Bamias, Fabio Cominelli
    Abstract:

    Background TNF-like cytokine 1A (TL1A) and its functional receptor, death-domain-receptor-3 (DR3), are multifunctional mediators of effector and regulatory immunity. We aimed to evaluate the functional role and therapeutic potential of TL1A/DR3 signaling in Crohn's disease-like Ileitis. Methods Ileitis-prone SAMP1/YitFc (SAMP) and TNFΔARE/+ mice were rendered deficient for DR3 or TL1A by microsatellite marker-assisted backcrossing. Pathological and immunological characteristics were compared between control and knockout mice, and mucosal immunophenotype was analyzed by Nanostring microarray assay. The therapeutic effect of pharmacological TL1A neutralization was also investigated. Results DR3 deficiency was associated with restoration of a homeostatic mucosal immunostat in SAMP mice through the regulation of several pro- and anti-inflammatory genes. This led to suppression of effector immunity, amelioration of Ileitis severity, and compromised ability of either unfractionated CD4+ or CD4+CD45RBhi mucosal lymphocytes to transfer Ileitis to severe combined immunodeficient mice recipients. TNF-driven Ileitis was also prevented in TNFΔARE/+xDR3-/- mice, in association with decreased expression of the pro-inflammatory cytokines TNF and IFN-γ. In contrast to DR3, TL1A was dispensable for the development of Ileitis although it affected the kinetics of inflammation, as TNFΔARE/+xTL1A-/- demonstrated delayed onset of inflammation, whereas administration of a neutralizing, anti-TL1A antibody ameliorated early but not late TNFΔARE/+ Ileitis. Conclusion We found a prominent pro-inflammatory role of DR3 in chronic Ileitis, which is only partially mediated via interaction with TL1A, raising the possibility for additional DR3 ligands. Death-domain-receptor-3 appears to be a master regulator of mucosal homeostasis and inflammation and may represent a candidate therapeutic target for chronic inflammatory conditions of the bowel.

  • genetic deletion of the bacterial sensor nod2 improves murine crohn s disease like Ileitis independent of functional dysbiosis
    Mucosal Immunology, 2017
    Co-Authors: Daniele Corridoni, Theresa T. Pizarro, Kristen O Arseneau, Alexander Rodriguezpalacios, G Di Stefano, L Di Martino, Dionysios A Antonopoulos, Eugene B Chang, Fabio Cominelli
    Abstract:

    Although genetic polymorphisms in NOD2 (nucleotide-binding oligomerization domain-containing 2) have been associated with the pathogenesis of Crohn's disease (CD), little is known regarding the role of wild-type (WT) NOD2 in the gut. To date, most murine studies addressing the role of WT Nod2 have been conducted using healthy (Ileitis/colitis-free) mouse strains. Here, we evaluated the effects of Nod2 deletion in a murine model of spontaneous Ileitis, i.e., the SAMP1Yit/Fc (SAMP) strain, which closely resembles CD. Remarkably, Nod2 deletion improved both chronic cobblestone Ileitis (by 50% assessed, as the % of abnormal mucosa at 24 wks of age), as well as acute dextran sodium sulfate (DSS) colitis. Mechanistically, Th2 cytokine production and Th2-transcription factor activation (i.e., STAT6 phosphorylation) were reduced. Microbiologically, the effects of Nod2 deletion appeared independent of fecal microbiota composition and function, assessed by 16S rRNA and metatranscriptomics. Our findings indicate that pharmacological blockade of NOD2 signaling in humans could improve health in Th2-driven chronic intestinal inflammation.

  • uncovering pathogenic mechanisms of inflammatory bowel disease using mouse models of crohn s disease like Ileitis what is the right model
    Cellular and molecular gastroenterology and hepatology, 2017
    Co-Authors: Fabio Cominelli, Kristen O Arseneau, Alexander Rodriguezpalacios, Theresa T. Pizarro
    Abstract:

    Crohn’s disease and ulcerative colitis, together known as inflammatory bowel disease, are debilitating chronic disorders of unknown cause and cure. Our evolving understanding of these pathologies is enhanced greatly by the use of animal models of intestinal inflammation that allow in vivo mechanistic studies, preclinical evaluation of new therapies, and investigation into the causative factors that underlie disease pathogenesis. Several animal models, most commonly generated in mice, exist for the study of colitis. The appropriateness of their use often can be determined by their mode of generation (ie, chemical induction, T-cell transfer, targeted genetic manipulation, spontaneously occurring, and so forth), the type of investigation (mechanistic studies, pathogenic experiments, preclinical evaluations, and so forth), and the type of inflammation that occurs in the model (acute vs chronic colitis, tissue injury/repair, and so forth). Although most murine models of inflammatory bowel disease develop inflammation in the colon, Crohn’s disease most commonly occurs in the terminal ileum, where a very limited number of mouse models manifest disease. This review discusses appropriate experimental applications for different mouse models of colitis, and highlights the particular utility of 2 highly relevant models of Crohn’s-like Ileitis—the spontaneous SAMP1/YitFc inbred mouse strain and the genetically engineered TnfΔAU-rich element/+ mouse model of tumor necrosis factor overexpression, both of which bear strong resemblance to the human condition. Similar to patients with Crohn’s disease, SAMP1/YitFc Ileitis develops spontaneously, without chemical, genetic, or immunologic manipulation, making this model particularly relevant for studies aimed at identifying the primary defect underlying the occurrence of Crohn’s Ileitis, as well as preclinical testing of novel treatment modalities.

  • Epithelial-specific Toll-like Receptor (TLR)5 Activation Mediates Barrier Dysfunction in Experimental Ileitis.
    Inflammatory bowel diseases, 2017
    Co-Authors: Loris Riccardo Lopetuso, Ruo Jia, X.m. Wang, Li Guo Jia, Valentina Petito, Wendy A. Goodman, Jon Meddings, Fabio Cominelli, Brian K. Reuter, Theresa T. Pizarro
    Abstract:

    BACKGROUND A large body of evidence supports a central role of TLR5 and its natural ligand, flagellin, in Crohn's disease (CD), with the precise mechanism(s) still unresolved. METHODS We investigated the role of flagellin/TLR5 in SAMP1/YitFc (SAMP) mice, a spontaneous model of Crohn's disease-like Ileitis. RESULTS Ileal Tlr5 and serum antiflagellin IgG antibodies were increased in SAMP before the onset of inflammation and during established disease; these trends were abrogated in the absence of colonizing commensal bacteria. Irradiated SAMP receiving either wild-type (AKR) or SAMP bone marrow (BM) developed severe Ileitis and displayed increased ileal Tlr5 compared with AKR recipients of either SAMP or AKR bone marrow, neither of which conferred Ileitis, suggesting that elevated TLR5 in native SAMP is derived primarily from a nonhematopoietic (e.g., epithelial) source. Indeed, ileal epithelial TLR5 in preinflamed SAMP was increased compared with age-matched AKR and germ-free SAMP. TLR5-specific ex vivo activation of SAMP ileal tissues decreased epithelial barrier resistance, indicative of increased permeability, and was accompanied by altered expression of the tight junction proteins, claudin-3, occludin, and zonula occludens-1. CONCLUSIONS Our results provide evidence that aberrant, elevated TLR5 expression is present in the ileal epithelium of SAMP mice, is augmented in the presence of the gut microbiome, and that TLR5 activation in response to bacterial flagellin results in a deficiency to maintain appropriate epithelial barrier integrity. Together, these findings represent a potential mechanistic pathway leading to the exacerbation and perpetuation of chronic gut inflammation in experimental Ileitis and possibly, in patients with Crohn's disease.

  • samp1 yitfc mice develop Ileitis via loss of ccl21 and defects in dendritic cell migration
    Gastroenterology, 2015
    Co-Authors: Zbigniew Mikulski, Wendy A. Goodman, Fabio Cominelli, Theresa T. Pizarro, Rebecca L Johnson, Iftach Shaked, Gisen Kim, Heba Nowyhed, Grzegorz Chodaczek, Klaus Ley
    Abstract:

    Background & Aims The lymphatic chemokine CCL21 is required for dendritic cell (DC) migration from tissues to lymph nodes, which helps establish tolerance to foreign yet harmless antigens. We demonstrate that CCL21 is almost completely absent from SAMP1/YitFc (SAMP) mice, which spontaneously develop chronic Ileitis that resembles Crohn's disease, and that DC migration is severely impaired in these mice compared with AKR mice (controls). Toll-like receptor agonists like the Toll-like receptor 7 agonist R848 induce DC maturation and mobilization. Methods We collected intestinal and other tissues and mesenteric lymph nodes (MLN) from SAMP mice. Expression of CCL21 was measured by quantitative reverse transcription polymerase chain reaction and immunofluorescence analyses; spontaneous and induced migration of DCs were assessed by flow cytometry. We analyzed production of retinoic acid by DCs and their ability to induce development of regulatory T cells. Mice were fed R848 to determine its effects on migration of DCs and development of Ileitis in SAMP mice. Results SAMP mice expressed almost no CCL21 in any tissue tested. Their CD11b + CD103 + DCs were defective in migration from the ileal lamina propria to the MLN. DCs from SAMP mice also had a greatly reduced ability to produce retinoic acid and induce development of regulatory T cells compared with control mice. Young SAMP mice had reduced CCL21 expression and decreased DC migration before developing Ileitis. Administration of R848 to adult SAMP mice increased migration of DC to the MLN and development of regulatory T cells there, and reduced the severity of Ileitis. Conclusions Loss of CCL21 signaling and DC migration is required for development of Ileitis in SAMP mice. Reagents such as R848, which activate DC migration to the MLN, may be developed as treatments for patients with Crohn's disease.