Imaginary Number

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 20292 Experts worldwide ranked by ideXlab platform

W U Yonghan - One of the best experts on this subject based on the ideXlab platform.

Ding Binfen - One of the best experts on this subject based on the ideXlab platform.

Liping Liu - One of the best experts on this subject based on the ideXlab platform.

  • Imaginary Numbers for combining linear equation models via dempster s rule
    International Journal of Approximate Reasoning, 2014
    Co-Authors: Liping Liu
    Abstract:

    This paper proposes the concept of Imaginary extreme Numbers, which are like traditional Imaginary Number a+bi with i=-1 being replaced by e=1/0, along with the usual operations on these Numbers including addition, subtraction, and division. It then applies the concept to representing linear equations in knowledge-based systems. It proves that the combination of linear equations via [email protected]?s rule is equivalent to solving a system of simultaneous equations or finding a least-squares estimate when they are overdetermined.

Herbert P. Jennissen - One of the best experts on this subject based on the ideXlab platform.

  • contact angles in Imaginary Number space a novel tool for probing the remaining mysteries of ultrahydrophilicity and superhydrophilicity
    MRS Proceedings, 2014
    Co-Authors: Herbert P. Jennissen
    Abstract:

    Imaginary contact angles underlying hyperhydrophilicity and the Inverse Lotus Effect introduce a fundamental new development in the area of contact angles and wettability. Just as the Lotus Effect expanded hydrophobicity beyond the maximal contact angle of 119° on a smooth surface, the Inverse Lotus Effect expands hydrophilicity beyond the minimal contact angle of 0° on a smooth surface. Imaginary dynamic contact angles thus offer an exciting enhancement in tools and methodology for measuring the wettability on rough, highly hydrophilic surfaces. Contrary to current thinking, full or perfect wetting of rough surfaces is only little understood and cannot be predicted by classical equations. Therefore also the exact physical basis of Imaginary dynamic contact angles remains to be elucidated. In this short treatise some aspects of the new field will be treated with examples derived from rough titanium surfaces employed in the medical field.

  • Redefining the Wilhelmy and Young equations to Imaginary Number space and implications for wettability measurements
    Materialwissenschaft und Werkstofftechnik, 2011
    Co-Authors: Herbert P. Jennissen
    Abstract:

    Although Wilhelmy balance measurements have been reported to yield undefined values of the type cos θ > 1, this phenomenon often goes unnoticed because commercial instruments fail to report this error, listing a contact angle of zero instead. On rough superhydrophilic surfaces such “undefined” values appear much more frequent, but a mathematical framework for evaluation and quantification is lacking. A solution to the problem of cos θ > 1 was found by implementing the Imaginary Number i. It will be shown that both the classical and novel contact angles can be described by Numbers in an Imaginary space hitherto not accessible to the Wilhelmy and Young equation system. It will be exemplified that Wilhelmy balance data classed as undefined because of cos θ > 1, can easily be converted to Imaginary Numbers allowing the extrapolation of a novel Imaginary advancing θai,AH2O = 0.36i rad and receding contact angle θai,RH2O = 0.37i rad at zero immersion depth as in classical tensiometry. The two Imaginary angles compare to classical angles of ∣20°∣–∣25°∣ . The postulated core wettability range for superhydrophilicity in the special case of the “inverse lotus effect” is suggested to extend from the classical angle of cos (10°) to the Imaginary angle of cos (0.37i rad). Knowledge obtained from such analyses should be of use in constructing novel artificial surfaces of extreme wettability, e. g. superhydrophilicity, not only in the medical field of implantology but also in chemistry, physics and engineering. Obwohl es seit langem Berichte uber Wilhelmy-Waage Messungen gibt, die zu undefinierten Werten der Art cos θ > 1 fuhrten, wird dieses Phanomen haufig ubersehen, weil die kommerziellen Gerate statt einer Fehlermeldung den Kontaktwinkel Null ausgeben. Auf rauhen superhydrophilen Oberflachen scheinen “undefinierte” Werte sehr viel haufiger vorzukommen als bisher bekannt, wobei ein mathematisches Gerust fur eine Auswertung und Quantifizierung fehlt. Eine Losung des Problems cos θ > 1 wurde durch die Verwendung der imaginaren Zahl I gefunden. Es wird gezeigt, dass sowohl die klassischen als auch neuartige Kontaktwinkel durch Zahlen im imaginaren Raum, fur den es bisher fur die Wilhelmy- und Young-Gleichung keinen Zugang gab, beschrieben werden konnen. In einem Beispiel wird gezeigt, dass Wilhelmy-Waage Daten, die bisher wegen cos θ > 1 als undefiniert galten, leicht in imaginare Zahlen konvertiert werden konnen, die es erlauben einen neuartigen imaginaren Vorruck- θai,AH2O = 0.36i rad und Ruckzugswinkel θai,RH2O = 0.37i rad bei der Eintauchtiefe Null zu extrapolieren wie bei der klassischen Tensiometrie. Die beiden Winkel sind vergleichbar den klassischen Winkeln von ∣20°∣–∣25° ∣ . Der postulierte Kernbereich fur die Benetzbarkeit im Spezialfall des “inversen Lotus-Effektes” erstreckt sich vom klassischen Kontaktwinkel cos (10°) bis zum imaginaren Winkel von cos (0.37i rad). Neue Erkenntnisse, die von solchen Analysen gewonnen werden konnen, sollten von Bedeutung fur die Herstellung neuer kunstlicher Oberflachen mit extremer Benetzbarkeit z.B. Superhydrophilizitat nicht nur im Medizinischen Bereich der Implantologie sondern auch in der Chemie, Physik und den Ingenieurwissenschaften sein.

V Suresh - One of the best experts on this subject based on the ideXlab platform.