Incropera

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 6 Experts worldwide ranked by ideXlab platform

González C. - One of the best experts on this subject based on the ideXlab platform.

  • Simulación tridimensional del flujo en geometrías aplicables a un intercambiador de calor
    2020
    Co-Authors: Molina Víctor, Salvo Nahuel, González C.
    Abstract:

    En este trabajo se analizan las principales características de un flujo de energía para geometrías que pueden ser implementadas en un intercambiador de calor. El diseño básico esta dispuesto en forma de banco de tubos escalonados con respecto a la dirección principal del flujo incidente (Incropera y De Witt, 1999). Se consideran geometrías para la sección de cada tubo, circular y elíptica. En cada caso, la separación entre los centros de los tubos, es la misma tanto longitudinal como transversal con respecto a la dirección principal del flujo. Las superficies de contacto entre el intercambiador y el fluido es la misma para cada geometría.This paper reviews the main features of an energy flow geometries that can be implemented in a heat exchanger. The basic design is prepared in the form of staggered tube bank with respect to the main direction of incident flow (Incropera and De Witt, 1999). Geometries are considered for the section of each tube, circular and elliptical. In each case, the separation between the centers of the tubes is the same in both longitudinal and transverse with respect to the main direction of flow. The contact surfaces between the exchanger and the fluid is the same for each geometry. The simulation was conducted using the Finite Element Method in three-dimensional shape. Are shown values of the main dimensionless numbers involved in the transfer of energy for geometries.Asociación Argentina de Energías Renovables y Medio Ambiente (ASADES

Molina Víctor - One of the best experts on this subject based on the ideXlab platform.

  • Simulación tridimensional del flujo en geometrías aplicables a un intercambiador de calor
    2020
    Co-Authors: Molina Víctor, Salvo Nahuel, González C.
    Abstract:

    En este trabajo se analizan las principales características de un flujo de energía para geometrías que pueden ser implementadas en un intercambiador de calor. El diseño básico esta dispuesto en forma de banco de tubos escalonados con respecto a la dirección principal del flujo incidente (Incropera y De Witt, 1999). Se consideran geometrías para la sección de cada tubo, circular y elíptica. En cada caso, la separación entre los centros de los tubos, es la misma tanto longitudinal como transversal con respecto a la dirección principal del flujo. Las superficies de contacto entre el intercambiador y el fluido es la misma para cada geometría.This paper reviews the main features of an energy flow geometries that can be implemented in a heat exchanger. The basic design is prepared in the form of staggered tube bank with respect to the main direction of incident flow (Incropera and De Witt, 1999). Geometries are considered for the section of each tube, circular and elliptical. In each case, the separation between the centers of the tubes is the same in both longitudinal and transverse with respect to the main direction of flow. The contact surfaces between the exchanger and the fluid is the same for each geometry. The simulation was conducted using the Finite Element Method in three-dimensional shape. Are shown values of the main dimensionless numbers involved in the transfer of energy for geometries.Asociación Argentina de Energías Renovables y Medio Ambiente (ASADES

Salvo Nahuel - One of the best experts on this subject based on the ideXlab platform.

  • Simulación tridimensional del flujo en geometrías aplicables a un intercambiador de calor
    2020
    Co-Authors: Molina Víctor, Salvo Nahuel, González C.
    Abstract:

    En este trabajo se analizan las principales características de un flujo de energía para geometrías que pueden ser implementadas en un intercambiador de calor. El diseño básico esta dispuesto en forma de banco de tubos escalonados con respecto a la dirección principal del flujo incidente (Incropera y De Witt, 1999). Se consideran geometrías para la sección de cada tubo, circular y elíptica. En cada caso, la separación entre los centros de los tubos, es la misma tanto longitudinal como transversal con respecto a la dirección principal del flujo. Las superficies de contacto entre el intercambiador y el fluido es la misma para cada geometría.This paper reviews the main features of an energy flow geometries that can be implemented in a heat exchanger. The basic design is prepared in the form of staggered tube bank with respect to the main direction of incident flow (Incropera and De Witt, 1999). Geometries are considered for the section of each tube, circular and elliptical. In each case, the separation between the centers of the tubes is the same in both longitudinal and transverse with respect to the main direction of flow. The contact surfaces between the exchanger and the fluid is the same for each geometry. The simulation was conducted using the Finite Element Method in three-dimensional shape. Are shown values of the main dimensionless numbers involved in the transfer of energy for geometries.Asociación Argentina de Energías Renovables y Medio Ambiente (ASADES

Yung C Shin - One of the best experts on this subject based on the ideXlab platform.

  • transient three dimensional heat transfer model for the laser assisted machining of silicon nitride ii assessment of parametric effects
    International Journal of Heat and Mass Transfer, 2000
    Co-Authors: Jay Christopher Rozzi, F P Incropera, Yung C Shin
    Abstract:

    Abstract In a companion paper (J.C. Rozzi, F.E. Pfefferkorn, F.P. Incropera, Y.C. Shin, Transient, three-dimensional heat transfer model for the laser assisted machining of silicon nitride: I. Comparison of predictions with measured surface temperature histories, International Journal of Heat and Mass Transfer 43 (2000) 1409–1424), experimental validation was provided for a transient, three-dimensional heat transfer model of the LAM of a silicon nitride workpiece. In this paper, the model is used to elucidate the influence of operating parameters on thermal conditions within the workpiece. Calculations reveal that thermal energy generation in the primary shear zone has a significant influence on the workpiece temperature distribution, while the effects of heat transfer at the tool flank interface may be neglected. Although temperatures at the material removal plane were only moderately influenced by an increase in the workpiece rotational speed, a reduction in total laser energy deposition due to increased laser/tool translational velocity or decreased laser power may preclude the attainment of a minimum material removal temperature corresponding to the softening temperature range of the YSiAlON glassy phase. Due to the comparatively small influence on radial temperature gradients within the material removal plane, the minimum material removal temperature decreased only slightly with increasing depth of cut. However, the amount of laser energy deposition on the unmachined workpiece increased significantly with increasing laser-tool lead distance, yielding an attendant increase in the material removal temperature. For a fixed laser-tool lead, energy deposition at the unmachined workpiece surface increased with decreasing laser beam diameter and increasing power.

Jay Christopher Rozzi - One of the best experts on this subject based on the ideXlab platform.

  • transient three dimensional heat transfer model for the laser assisted machining of silicon nitride ii assessment of parametric effects
    International Journal of Heat and Mass Transfer, 2000
    Co-Authors: Jay Christopher Rozzi, F P Incropera, Yung C Shin
    Abstract:

    Abstract In a companion paper (J.C. Rozzi, F.E. Pfefferkorn, F.P. Incropera, Y.C. Shin, Transient, three-dimensional heat transfer model for the laser assisted machining of silicon nitride: I. Comparison of predictions with measured surface temperature histories, International Journal of Heat and Mass Transfer 43 (2000) 1409–1424), experimental validation was provided for a transient, three-dimensional heat transfer model of the LAM of a silicon nitride workpiece. In this paper, the model is used to elucidate the influence of operating parameters on thermal conditions within the workpiece. Calculations reveal that thermal energy generation in the primary shear zone has a significant influence on the workpiece temperature distribution, while the effects of heat transfer at the tool flank interface may be neglected. Although temperatures at the material removal plane were only moderately influenced by an increase in the workpiece rotational speed, a reduction in total laser energy deposition due to increased laser/tool translational velocity or decreased laser power may preclude the attainment of a minimum material removal temperature corresponding to the softening temperature range of the YSiAlON glassy phase. Due to the comparatively small influence on radial temperature gradients within the material removal plane, the minimum material removal temperature decreased only slightly with increasing depth of cut. However, the amount of laser energy deposition on the unmachined workpiece increased significantly with increasing laser-tool lead distance, yielding an attendant increase in the material removal temperature. For a fixed laser-tool lead, energy deposition at the unmachined workpiece surface increased with decreasing laser beam diameter and increasing power.