Isocyanic Acid

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 1107 Experts worldwide ranked by ideXlab platform

Paal Molander - One of the best experts on this subject based on the ideXlab platform.

  • comparison of air samplers for determination of Isocyanic Acid and applicability for work environment exposure assessment
    Environmental Science: Processes & Impacts, 2017
    Co-Authors: Mikolaj Jan Jankowski, Raymond Olsen, Yngvar Thomassen, Paal Molander
    Abstract:

    Isocyanic Acid (ICA) is one of the most abundant isocyanates formed during thermal decomposition of polyurethane (PUR), and other nitrogen containing polymers. Hot-work, such as flame cutting, forging, grinding, turning and welding may give rise to thermal decomposition of said polymers potentially forming significant amounts of ICA. A newly launched dry denuder sampler for airborne isocyanates using di-n-butylamine (DBA) demonstrated build-up of background ICA-DBA over time. Build-up of background ICA-DBA was not observed when stored at inert conditions (Ar atmosphere) for 84 days. Thus, freshly prepared denuders were used. The sampling efficiency of ICA using freshly prepared denuder samplers (0.2 L min−1), impinger + filter samplers (0.5 L min−1) using DBA and 1-(2-methoxyphenyl) piperazine (2MP)-impregnated filter cassette samplers (1 L min−1) was investigated. PTR-MS measurements of ICA were used as a quantitative reference. Dynamically generated standard ICA atmospheres covered the range 5.6 to 640 ppb at absolute humidities (AH) 4.0 and 16 g m−3. Recovered ICA was found to be 73–115% (denuder), 89–115% (impinger + filter) and 62–100% (2MP filter cassette). The method limit of detection (LOD) was equal to an amount of ICA of 24 ng (denuder), 8.9 ng (impinger + filter) and 9.4 ng (2MP filter cassette). The PTR-MS LOD for ICA was 1.8 and 2.8 ppb in atmospheres with an AH of 4 and 16 g m−3. Denuder samplers were used for personal (n = 176) and stationary (n = 31) air sampling during hot-work at six industrial sites (n = 23 workers). ICA was detected above method LOD in 66% and 58% of the personal and stationary samples, respectively. ICA workroom air concentrations were determined to be 1.8–320 ppb (median 12 ppb) (personal samples), and 1.5–44 ppb (median 6.6 ppb) (stationary samples).

  • the stability and generation pattern of thermally formed Isocyanic Acid ica in air potential and limitations of proton transfer reaction mass spectrometry ptr ms for real time workroom atmosphere measurements
    Environmental Science: Processes & Impacts, 2016
    Co-Authors: Mikolaj Jan Jankowski, Raymond Olsen, Yngvar Thomassen, Paal Molander
    Abstract:

    Isocyanic Acid (ICA) in vapour phase has been reported to be of unstable nature, making the occupational hygienic relevance of ICA questionable. The stability of pure ICA in clean air at different humidity conditions was investigated by Fourier transform-infrared spectrometric (FT-IR) measurements. Furthermore, the stability of ICA in a complex atmosphere representative thermal degradation hot-work procedures were examined by performing parallel measurements by proton transfer reaction-mass spectrometric (PTR-MS) instrumentation and off-line denuder air sampling using di-n-butylamine (as a derivatization agent prior to liquid chromatography mass spectrometric (LC-MS) determination). The apparent half-life of ICA in pure ICA atmospheres was 16 to 4 hours at absolute humidity (AH) in the range 4.2 to 14.6 g m(-3), respectively. In a complex atmosphere at an initial AH of 9.6 g m(-3) the apparent half-life of ICA was 8 hours, as measured with the denuder method. Thus, thermally formed ICA is to be considered as a potential occupational hazard with regard to inhalation. The generation pattern of ICA formed during controlled gradient (100-540 °C) thermal decomposition of different polymers in the presence of air was examined by parallel PTR-MS and denuder air sampling. According to measurement by denuder sampling ICA was the dominant aliphatic isocyanate formed during the thermal decomposition of all polymers. The real-time measurements of the decomposed polymers revealed different ICA generation patterns, with initial appearance of thermally released ICA in the temperature range 200-260 °C. The PTR-MS ICA measurements was however affected by mass overlap from other decomposition products at m/z 44, illustrated by a [ICA]Denuder/[ICA]PTR-MS ratio ranging from 0.04 to 0.90. These findings limits the potential use of PTR-MS for real time measurements of thermally released ICA in field, suggesting parallel sampling with short-term sequential off-line methodology.

  • the applicability of proton transfer reaction mass spectrometry ptr ms for determination of Isocyanic Acid ica in work room atmospheres
    Environmental Science: Processes & Impacts, 2014
    Co-Authors: Mikolaj Jan Jankowski, Raymond Olsen, Yngvar Thomassen, Claus J Nielsen, Paal Molander
    Abstract:

    A method is presented for the real-time quantitative determination of Isocyanic Acid (ICA) in air using proton transfer reaction-mass spectrometry (PTR-MS). Quantum mechanical calculations were performed to establish the ion-polar molecule reaction rate of ICA and other isocyanates. The PTR-MS was calibrated against different ICA air concentrations and humidity conditions using Fourier transform-infrared spectroscopy (FT-IR) as quantitative reference. Based on these experiments a simple humidity dependant model was derived for correction of the PTR-MS response for ICA. The corrected PTR-MS data was linearly correlated (R2 > 0.99) with the data acquired by FT-IR. The PTR-MS instrumental limit of detection (LOD) for ICA was 2.3 ppb. Humid atmospheres resulted in LODs of 3.4 and 7.8 ppb, at an absolute humidity (AH) of 4.0 and 15.5 g m−3, respectively. Furthermore, off-line sampling using denuder and impinger samplers using di-n-butylamine (DBA) as derivatization reagent was compared with PTR-MS measurements in a dynamically generated standard ICA atmosphere. Denuder (n = 4) and impinger (n = 4) sampling subsequent to liquid chromatography mass spectrometry (LC-MS) determination compared to corrected PTR-MS data resulted in recoveries of 79.6 (8.1% RSD) and 99.9 (9.3% RSD) %, respectively. Measurements of ICA from thermally decomposed cured 1,6-hexamethylene diisocyanate (HDI)-paint was performed using PTR-MS and denuder (n = 3) sampling. The relation between the average ICA responses using denuders (34.4 ppb) and PTR-MS (42.6 ppb) was 80.6%, which coincided well with the relative recovery obtained from the controlled laboratory experiments using dynamically generated ICA atmospheres (79.6%). The variability in ICA air concentration during the welding process (170% RSDPTR-MS) illustrated the need for real-time measurements.

Mikolaj Jan Jankowski - One of the best experts on this subject based on the ideXlab platform.

  • comparison of air samplers for determination of Isocyanic Acid and applicability for work environment exposure assessment
    Environmental Science: Processes & Impacts, 2017
    Co-Authors: Mikolaj Jan Jankowski, Raymond Olsen, Yngvar Thomassen, Paal Molander
    Abstract:

    Isocyanic Acid (ICA) is one of the most abundant isocyanates formed during thermal decomposition of polyurethane (PUR), and other nitrogen containing polymers. Hot-work, such as flame cutting, forging, grinding, turning and welding may give rise to thermal decomposition of said polymers potentially forming significant amounts of ICA. A newly launched dry denuder sampler for airborne isocyanates using di-n-butylamine (DBA) demonstrated build-up of background ICA-DBA over time. Build-up of background ICA-DBA was not observed when stored at inert conditions (Ar atmosphere) for 84 days. Thus, freshly prepared denuders were used. The sampling efficiency of ICA using freshly prepared denuder samplers (0.2 L min−1), impinger + filter samplers (0.5 L min−1) using DBA and 1-(2-methoxyphenyl) piperazine (2MP)-impregnated filter cassette samplers (1 L min−1) was investigated. PTR-MS measurements of ICA were used as a quantitative reference. Dynamically generated standard ICA atmospheres covered the range 5.6 to 640 ppb at absolute humidities (AH) 4.0 and 16 g m−3. Recovered ICA was found to be 73–115% (denuder), 89–115% (impinger + filter) and 62–100% (2MP filter cassette). The method limit of detection (LOD) was equal to an amount of ICA of 24 ng (denuder), 8.9 ng (impinger + filter) and 9.4 ng (2MP filter cassette). The PTR-MS LOD for ICA was 1.8 and 2.8 ppb in atmospheres with an AH of 4 and 16 g m−3. Denuder samplers were used for personal (n = 176) and stationary (n = 31) air sampling during hot-work at six industrial sites (n = 23 workers). ICA was detected above method LOD in 66% and 58% of the personal and stationary samples, respectively. ICA workroom air concentrations were determined to be 1.8–320 ppb (median 12 ppb) (personal samples), and 1.5–44 ppb (median 6.6 ppb) (stationary samples).

  • the stability and generation pattern of thermally formed Isocyanic Acid ica in air potential and limitations of proton transfer reaction mass spectrometry ptr ms for real time workroom atmosphere measurements
    Environmental Science: Processes & Impacts, 2016
    Co-Authors: Mikolaj Jan Jankowski, Raymond Olsen, Yngvar Thomassen, Paal Molander
    Abstract:

    Isocyanic Acid (ICA) in vapour phase has been reported to be of unstable nature, making the occupational hygienic relevance of ICA questionable. The stability of pure ICA in clean air at different humidity conditions was investigated by Fourier transform-infrared spectrometric (FT-IR) measurements. Furthermore, the stability of ICA in a complex atmosphere representative thermal degradation hot-work procedures were examined by performing parallel measurements by proton transfer reaction-mass spectrometric (PTR-MS) instrumentation and off-line denuder air sampling using di-n-butylamine (as a derivatization agent prior to liquid chromatography mass spectrometric (LC-MS) determination). The apparent half-life of ICA in pure ICA atmospheres was 16 to 4 hours at absolute humidity (AH) in the range 4.2 to 14.6 g m(-3), respectively. In a complex atmosphere at an initial AH of 9.6 g m(-3) the apparent half-life of ICA was 8 hours, as measured with the denuder method. Thus, thermally formed ICA is to be considered as a potential occupational hazard with regard to inhalation. The generation pattern of ICA formed during controlled gradient (100-540 °C) thermal decomposition of different polymers in the presence of air was examined by parallel PTR-MS and denuder air sampling. According to measurement by denuder sampling ICA was the dominant aliphatic isocyanate formed during the thermal decomposition of all polymers. The real-time measurements of the decomposed polymers revealed different ICA generation patterns, with initial appearance of thermally released ICA in the temperature range 200-260 °C. The PTR-MS ICA measurements was however affected by mass overlap from other decomposition products at m/z 44, illustrated by a [ICA]Denuder/[ICA]PTR-MS ratio ranging from 0.04 to 0.90. These findings limits the potential use of PTR-MS for real time measurements of thermally released ICA in field, suggesting parallel sampling with short-term sequential off-line methodology.

  • the applicability of proton transfer reaction mass spectrometry ptr ms for determination of Isocyanic Acid ica in work room atmospheres
    Environmental Science: Processes & Impacts, 2014
    Co-Authors: Mikolaj Jan Jankowski, Raymond Olsen, Yngvar Thomassen, Claus J Nielsen, Paal Molander
    Abstract:

    A method is presented for the real-time quantitative determination of Isocyanic Acid (ICA) in air using proton transfer reaction-mass spectrometry (PTR-MS). Quantum mechanical calculations were performed to establish the ion-polar molecule reaction rate of ICA and other isocyanates. The PTR-MS was calibrated against different ICA air concentrations and humidity conditions using Fourier transform-infrared spectroscopy (FT-IR) as quantitative reference. Based on these experiments a simple humidity dependant model was derived for correction of the PTR-MS response for ICA. The corrected PTR-MS data was linearly correlated (R2 > 0.99) with the data acquired by FT-IR. The PTR-MS instrumental limit of detection (LOD) for ICA was 2.3 ppb. Humid atmospheres resulted in LODs of 3.4 and 7.8 ppb, at an absolute humidity (AH) of 4.0 and 15.5 g m−3, respectively. Furthermore, off-line sampling using denuder and impinger samplers using di-n-butylamine (DBA) as derivatization reagent was compared with PTR-MS measurements in a dynamically generated standard ICA atmosphere. Denuder (n = 4) and impinger (n = 4) sampling subsequent to liquid chromatography mass spectrometry (LC-MS) determination compared to corrected PTR-MS data resulted in recoveries of 79.6 (8.1% RSD) and 99.9 (9.3% RSD) %, respectively. Measurements of ICA from thermally decomposed cured 1,6-hexamethylene diisocyanate (HDI)-paint was performed using PTR-MS and denuder (n = 3) sampling. The relation between the average ICA responses using denuders (34.4 ppb) and PTR-MS (42.6 ppb) was 80.6%, which coincided well with the relative recovery obtained from the controlled laboratory experiments using dynamically generated ICA atmospheres (79.6%). The variability in ICA air concentration during the welding process (170% RSDPTR-MS) illustrated the need for real-time measurements.

Yngvar Thomassen - One of the best experts on this subject based on the ideXlab platform.

  • comparison of air samplers for determination of Isocyanic Acid and applicability for work environment exposure assessment
    Environmental Science: Processes & Impacts, 2017
    Co-Authors: Mikolaj Jan Jankowski, Raymond Olsen, Yngvar Thomassen, Paal Molander
    Abstract:

    Isocyanic Acid (ICA) is one of the most abundant isocyanates formed during thermal decomposition of polyurethane (PUR), and other nitrogen containing polymers. Hot-work, such as flame cutting, forging, grinding, turning and welding may give rise to thermal decomposition of said polymers potentially forming significant amounts of ICA. A newly launched dry denuder sampler for airborne isocyanates using di-n-butylamine (DBA) demonstrated build-up of background ICA-DBA over time. Build-up of background ICA-DBA was not observed when stored at inert conditions (Ar atmosphere) for 84 days. Thus, freshly prepared denuders were used. The sampling efficiency of ICA using freshly prepared denuder samplers (0.2 L min−1), impinger + filter samplers (0.5 L min−1) using DBA and 1-(2-methoxyphenyl) piperazine (2MP)-impregnated filter cassette samplers (1 L min−1) was investigated. PTR-MS measurements of ICA were used as a quantitative reference. Dynamically generated standard ICA atmospheres covered the range 5.6 to 640 ppb at absolute humidities (AH) 4.0 and 16 g m−3. Recovered ICA was found to be 73–115% (denuder), 89–115% (impinger + filter) and 62–100% (2MP filter cassette). The method limit of detection (LOD) was equal to an amount of ICA of 24 ng (denuder), 8.9 ng (impinger + filter) and 9.4 ng (2MP filter cassette). The PTR-MS LOD for ICA was 1.8 and 2.8 ppb in atmospheres with an AH of 4 and 16 g m−3. Denuder samplers were used for personal (n = 176) and stationary (n = 31) air sampling during hot-work at six industrial sites (n = 23 workers). ICA was detected above method LOD in 66% and 58% of the personal and stationary samples, respectively. ICA workroom air concentrations were determined to be 1.8–320 ppb (median 12 ppb) (personal samples), and 1.5–44 ppb (median 6.6 ppb) (stationary samples).

  • the stability and generation pattern of thermally formed Isocyanic Acid ica in air potential and limitations of proton transfer reaction mass spectrometry ptr ms for real time workroom atmosphere measurements
    Environmental Science: Processes & Impacts, 2016
    Co-Authors: Mikolaj Jan Jankowski, Raymond Olsen, Yngvar Thomassen, Paal Molander
    Abstract:

    Isocyanic Acid (ICA) in vapour phase has been reported to be of unstable nature, making the occupational hygienic relevance of ICA questionable. The stability of pure ICA in clean air at different humidity conditions was investigated by Fourier transform-infrared spectrometric (FT-IR) measurements. Furthermore, the stability of ICA in a complex atmosphere representative thermal degradation hot-work procedures were examined by performing parallel measurements by proton transfer reaction-mass spectrometric (PTR-MS) instrumentation and off-line denuder air sampling using di-n-butylamine (as a derivatization agent prior to liquid chromatography mass spectrometric (LC-MS) determination). The apparent half-life of ICA in pure ICA atmospheres was 16 to 4 hours at absolute humidity (AH) in the range 4.2 to 14.6 g m(-3), respectively. In a complex atmosphere at an initial AH of 9.6 g m(-3) the apparent half-life of ICA was 8 hours, as measured with the denuder method. Thus, thermally formed ICA is to be considered as a potential occupational hazard with regard to inhalation. The generation pattern of ICA formed during controlled gradient (100-540 °C) thermal decomposition of different polymers in the presence of air was examined by parallel PTR-MS and denuder air sampling. According to measurement by denuder sampling ICA was the dominant aliphatic isocyanate formed during the thermal decomposition of all polymers. The real-time measurements of the decomposed polymers revealed different ICA generation patterns, with initial appearance of thermally released ICA in the temperature range 200-260 °C. The PTR-MS ICA measurements was however affected by mass overlap from other decomposition products at m/z 44, illustrated by a [ICA]Denuder/[ICA]PTR-MS ratio ranging from 0.04 to 0.90. These findings limits the potential use of PTR-MS for real time measurements of thermally released ICA in field, suggesting parallel sampling with short-term sequential off-line methodology.

  • the applicability of proton transfer reaction mass spectrometry ptr ms for determination of Isocyanic Acid ica in work room atmospheres
    Environmental Science: Processes & Impacts, 2014
    Co-Authors: Mikolaj Jan Jankowski, Raymond Olsen, Yngvar Thomassen, Claus J Nielsen, Paal Molander
    Abstract:

    A method is presented for the real-time quantitative determination of Isocyanic Acid (ICA) in air using proton transfer reaction-mass spectrometry (PTR-MS). Quantum mechanical calculations were performed to establish the ion-polar molecule reaction rate of ICA and other isocyanates. The PTR-MS was calibrated against different ICA air concentrations and humidity conditions using Fourier transform-infrared spectroscopy (FT-IR) as quantitative reference. Based on these experiments a simple humidity dependant model was derived for correction of the PTR-MS response for ICA. The corrected PTR-MS data was linearly correlated (R2 > 0.99) with the data acquired by FT-IR. The PTR-MS instrumental limit of detection (LOD) for ICA was 2.3 ppb. Humid atmospheres resulted in LODs of 3.4 and 7.8 ppb, at an absolute humidity (AH) of 4.0 and 15.5 g m−3, respectively. Furthermore, off-line sampling using denuder and impinger samplers using di-n-butylamine (DBA) as derivatization reagent was compared with PTR-MS measurements in a dynamically generated standard ICA atmosphere. Denuder (n = 4) and impinger (n = 4) sampling subsequent to liquid chromatography mass spectrometry (LC-MS) determination compared to corrected PTR-MS data resulted in recoveries of 79.6 (8.1% RSD) and 99.9 (9.3% RSD) %, respectively. Measurements of ICA from thermally decomposed cured 1,6-hexamethylene diisocyanate (HDI)-paint was performed using PTR-MS and denuder (n = 3) sampling. The relation between the average ICA responses using denuders (34.4 ppb) and PTR-MS (42.6 ppb) was 80.6%, which coincided well with the relative recovery obtained from the controlled laboratory experiments using dynamically generated ICA atmospheres (79.6%). The variability in ICA air concentration during the welding process (170% RSDPTR-MS) illustrated the need for real-time measurements.

Raymond Olsen - One of the best experts on this subject based on the ideXlab platform.

  • comparison of air samplers for determination of Isocyanic Acid and applicability for work environment exposure assessment
    Environmental Science: Processes & Impacts, 2017
    Co-Authors: Mikolaj Jan Jankowski, Raymond Olsen, Yngvar Thomassen, Paal Molander
    Abstract:

    Isocyanic Acid (ICA) is one of the most abundant isocyanates formed during thermal decomposition of polyurethane (PUR), and other nitrogen containing polymers. Hot-work, such as flame cutting, forging, grinding, turning and welding may give rise to thermal decomposition of said polymers potentially forming significant amounts of ICA. A newly launched dry denuder sampler for airborne isocyanates using di-n-butylamine (DBA) demonstrated build-up of background ICA-DBA over time. Build-up of background ICA-DBA was not observed when stored at inert conditions (Ar atmosphere) for 84 days. Thus, freshly prepared denuders were used. The sampling efficiency of ICA using freshly prepared denuder samplers (0.2 L min−1), impinger + filter samplers (0.5 L min−1) using DBA and 1-(2-methoxyphenyl) piperazine (2MP)-impregnated filter cassette samplers (1 L min−1) was investigated. PTR-MS measurements of ICA were used as a quantitative reference. Dynamically generated standard ICA atmospheres covered the range 5.6 to 640 ppb at absolute humidities (AH) 4.0 and 16 g m−3. Recovered ICA was found to be 73–115% (denuder), 89–115% (impinger + filter) and 62–100% (2MP filter cassette). The method limit of detection (LOD) was equal to an amount of ICA of 24 ng (denuder), 8.9 ng (impinger + filter) and 9.4 ng (2MP filter cassette). The PTR-MS LOD for ICA was 1.8 and 2.8 ppb in atmospheres with an AH of 4 and 16 g m−3. Denuder samplers were used for personal (n = 176) and stationary (n = 31) air sampling during hot-work at six industrial sites (n = 23 workers). ICA was detected above method LOD in 66% and 58% of the personal and stationary samples, respectively. ICA workroom air concentrations were determined to be 1.8–320 ppb (median 12 ppb) (personal samples), and 1.5–44 ppb (median 6.6 ppb) (stationary samples).

  • the stability and generation pattern of thermally formed Isocyanic Acid ica in air potential and limitations of proton transfer reaction mass spectrometry ptr ms for real time workroom atmosphere measurements
    Environmental Science: Processes & Impacts, 2016
    Co-Authors: Mikolaj Jan Jankowski, Raymond Olsen, Yngvar Thomassen, Paal Molander
    Abstract:

    Isocyanic Acid (ICA) in vapour phase has been reported to be of unstable nature, making the occupational hygienic relevance of ICA questionable. The stability of pure ICA in clean air at different humidity conditions was investigated by Fourier transform-infrared spectrometric (FT-IR) measurements. Furthermore, the stability of ICA in a complex atmosphere representative thermal degradation hot-work procedures were examined by performing parallel measurements by proton transfer reaction-mass spectrometric (PTR-MS) instrumentation and off-line denuder air sampling using di-n-butylamine (as a derivatization agent prior to liquid chromatography mass spectrometric (LC-MS) determination). The apparent half-life of ICA in pure ICA atmospheres was 16 to 4 hours at absolute humidity (AH) in the range 4.2 to 14.6 g m(-3), respectively. In a complex atmosphere at an initial AH of 9.6 g m(-3) the apparent half-life of ICA was 8 hours, as measured with the denuder method. Thus, thermally formed ICA is to be considered as a potential occupational hazard with regard to inhalation. The generation pattern of ICA formed during controlled gradient (100-540 °C) thermal decomposition of different polymers in the presence of air was examined by parallel PTR-MS and denuder air sampling. According to measurement by denuder sampling ICA was the dominant aliphatic isocyanate formed during the thermal decomposition of all polymers. The real-time measurements of the decomposed polymers revealed different ICA generation patterns, with initial appearance of thermally released ICA in the temperature range 200-260 °C. The PTR-MS ICA measurements was however affected by mass overlap from other decomposition products at m/z 44, illustrated by a [ICA]Denuder/[ICA]PTR-MS ratio ranging from 0.04 to 0.90. These findings limits the potential use of PTR-MS for real time measurements of thermally released ICA in field, suggesting parallel sampling with short-term sequential off-line methodology.

  • the applicability of proton transfer reaction mass spectrometry ptr ms for determination of Isocyanic Acid ica in work room atmospheres
    Environmental Science: Processes & Impacts, 2014
    Co-Authors: Mikolaj Jan Jankowski, Raymond Olsen, Yngvar Thomassen, Claus J Nielsen, Paal Molander
    Abstract:

    A method is presented for the real-time quantitative determination of Isocyanic Acid (ICA) in air using proton transfer reaction-mass spectrometry (PTR-MS). Quantum mechanical calculations were performed to establish the ion-polar molecule reaction rate of ICA and other isocyanates. The PTR-MS was calibrated against different ICA air concentrations and humidity conditions using Fourier transform-infrared spectroscopy (FT-IR) as quantitative reference. Based on these experiments a simple humidity dependant model was derived for correction of the PTR-MS response for ICA. The corrected PTR-MS data was linearly correlated (R2 > 0.99) with the data acquired by FT-IR. The PTR-MS instrumental limit of detection (LOD) for ICA was 2.3 ppb. Humid atmospheres resulted in LODs of 3.4 and 7.8 ppb, at an absolute humidity (AH) of 4.0 and 15.5 g m−3, respectively. Furthermore, off-line sampling using denuder and impinger samplers using di-n-butylamine (DBA) as derivatization reagent was compared with PTR-MS measurements in a dynamically generated standard ICA atmosphere. Denuder (n = 4) and impinger (n = 4) sampling subsequent to liquid chromatography mass spectrometry (LC-MS) determination compared to corrected PTR-MS data resulted in recoveries of 79.6 (8.1% RSD) and 99.9 (9.3% RSD) %, respectively. Measurements of ICA from thermally decomposed cured 1,6-hexamethylene diisocyanate (HDI)-paint was performed using PTR-MS and denuder (n = 3) sampling. The relation between the average ICA responses using denuders (34.4 ppb) and PTR-MS (42.6 ppb) was 80.6%, which coincided well with the relative recovery obtained from the controlled laboratory experiments using dynamically generated ICA atmospheres (79.6%). The variability in ICA air concentration during the welding process (170% RSDPTR-MS) illustrated the need for real-time measurements.

V. Sinha - One of the best experts on this subject based on the ideXlab platform.

  • Large unexplained suite of chemically reactive compounds present in ambient air due to biomass fires
    Nature Publishing Group, 2018
    Co-Authors: V. Kumar, B. P. Chandra, V. Sinha
    Abstract:

    Abstract Biomass fires impact global atmospheric chemistry. The reactive compounds emitted and formed due to biomass fires drive ozone and organic aerosol formation, affecting both air quality and climate. Direct hydroxyl (OH) Reactivity measurements quantify total gaseous reactive pollutant loadings and comparison with measured compounds yields the fraction of unmeasured compounds. Here, we quantified the magnitude and composition of total OH reactivity in the north-west Indo-Gangetic Plain. More than 120% increase occurred in total OH reactivity (28 s−1 to 64 s−1) and from no missing OH reactivity in the normal summertime air, the missing OH reactivity fraction increased to ~40 % in the post-harvest summertime period influenced by large scale biomass fires highlighting presence of unmeasured compounds. Increased missing OH reactivity between the two summertime periods was associated with increased concentrations of compounds with strong photochemical source such as acetaldehyde, acetone, hydroxyacetone, nitromethane, amides, Isocyanic Acid and primary emissions of acetonitrile and aromatic compounds. Currently even the most detailed state-of-the art atmospheric chemistry models exclude formamide, acetamide, nitromethane and Isocyanic Acid and their highly reactive precursor alkylamines (e.g. methylamine, ethylamine, dimethylamine, trimethylamine). For improved understanding of atmospheric chemistry-air quality-climate feedbacks in biomass-fire impacted atmospheric environments, future studies should include these compounds

  • contribution of post harvest agricultural paddy residue fires in the n w indo gangetic plain to ambient carcinogenic benzenoids toxic Isocyanic Acid and carbon monoxide
    Environment International, 2016
    Co-Authors: B. P. Chandra, V. Sinha
    Abstract:

    Abstract In the north west Indo-Gangetic Plain (N.W.IGP), large scale post-harvest paddy residue fires occur every year during the months of October–November. This anthropogenic perturbation causes contamination of the atmospheric environment with adverse impacts on regional air quality posing health risks for the population exposed to high concentrations of carcinogens such as benzene and toxic VOCs such as Isocyanic Acid. These gases and carbon monoxide are known to be emitted from biomass fires along with acetonitrile. Yet no long-term in-situ measurements quantifying the impact of this activity have been carried out in the N.W. IGP. Using high quality continuous online in-situ measurements of these gases at a strategic downwind site over a three year period from 2012 to 2014, we demonstrate the strong impact of this anthropogenic emission activity on ambient concentrations of these gases. In contrast to the pre-paddy harvest period, excellent correlation of benzenoids, Isocyanic Acid and CO with acetonitrile (a biomass burning chemical tracer); (r ≥ 0.82) and distinct VOC/acetonitrile emission ratios were observed for the post-paddy harvest period which was also characterized by high ambient concentrations of these species. The average concentrations of acetonitrile (1.62 ± 0.18 ppb), benzene (2.51 ± 0.28 ppb), toluene (3.72 ± 0.41 ppb), C8-aromatics (2.88 ± 0.30 ppb), C9-aromatics (1.55 ± 0.19 ppb) and CO (552 ± 113 ppb) in the post-paddy harvest periods were about 1.5 times higher than the annual average concentrations. For Isocyanic Acid, a compound with both primary and secondary sources, the concentration in the post-paddy harvest period was 0.97 ± 0.17 ppb. The annual average concentrations of benzene, a class A carcinogen, exceeded the annual exposure limit of 1.6 ppb at NTP mandated by the National Ambient Air Quality Standard of India (NAAQS). We show that mitigating the post-harvest paddy residue fires can lower the annual average concentration of benzene and ensure compliance with the NAAQS. Calculations of excessive lifetime cancer risk due to benzene amount to 25 and 10 per million inhabitants for children and adults, respectively, exceeding the USEPA threshold of 1 per million inhabitants. Annual exposure to Isocyanic Acid was close to 1 ppb, the concentration considered to be sufficient to enhance risks for cardiovascular diseases and cataracts. This study makes a case for urgent mitigation of post-harvest paddy residue fires as the unknown synergistic effect of multi-pollutant exposure due to emissions from this anthropogenic source may be posing grave health risks to the population of the N.W. IGP.