Juglans

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 12891 Experts worldwide ranked by ideXlab platform

Thierry Lamaze - One of the best experts on this subject based on the ideXlab platform.

Clifford R Parks - One of the best experts on this subject based on the ideXlab platform.

  • phylogeny and biogeography of Juglans juglandaceae based on matk and its sequence data
    American Journal of Botany, 2000
    Co-Authors: Alice M Stanford, Rachel Harden, Clifford R Parks
    Abstract:

    We investigated phylogenetic and biogeographic relationships within Juglans (walnuts), a Tertiary disjunct genus, using 15 species of Juglans and related (Juglandaceae) outgroups. The relationships were analyzed using nucleotide sequences of the chloroplast gene matK and its flanking spacers and of the internal transcribed spacers (ITS) and 5.8S gene of the nuclear ribosomal DNA. The DNA sequences provided 246 informative characters for parsimony analysis. ITS data supported as monophyletic groups the four generic sections, Cardiocaryon, Dioscaryon, Rhysocaryon,and Trachycaryon. Within Rhysocaryon, the temperate black walnuts and the tropical black walnuts were supported as monophyletic groups. When the two data sets were combined, J. cinerea was nested within Cardiocaryon. Combined analysis with published nuclear DNA restriction site data placed J. cinerea in a monophyletic group with Cardiocaryon. These analyses consistently supported Juglans as a monophyletic group and as the sister group to the genus Pterocarya. The results of this work are consistent with the known geological history of Juglans. The fossil record suggests that the butternuts had evolved by the early Oligocene in North America. The presence of butternuts in Eurasia could be the result of migration from North America to Eurasia during the warming trend of the mid Oligocene.

Keith Woeste - One of the best experts on this subject based on the ideXlab platform.

  • Microsatellite Borders and Micro-sequence Conservation in Juglans
    Scientific Reports, 2019
    Co-Authors: Aziz Ebrahimi, Mark V. Coggeshall, Samarth Mathur, Shaneka S. Lawson, Nicholas R. Labonte, Adam Lorch, Keith Woeste
    Abstract:

    Walnuts (Juglans spp.) are economically important nut and timber species with a worldwide distribution. Using the published Persian walnut genome as a reference for the assembly of short reads from six Juglans species and several interspecific hybrids, we identified simple sequence repeats in 12 Juglans nuclear and organellar genomes. The genome-wide distribution and polymorphisms of nuclear and organellar microsatellites (SSRs) for most Juglans genomes have not been previously studied. We compared the frequency of nuclear SSR motifs and their lengths across Juglans, and identified section-specific chloroplast SSR motifs. Primer pairs were designed for more than 60,000 SSR-containing sequences based on alignment against assembled scaffold sequences. Of the >60,000 loci, 39,000 were validated by e-PCR using unique primer pairs. We identified primers containing 100% sequence identity in multiple species. Across species, sequence identity in the SSR-flanking regions was generally low. Although SSRs are common and highly dispersed in the genome, their flanking sequences are conserved at about 90 to 95% identity within Juglans and within species. In a few rare cases, flanking sequences are identical across species of Juglans. This comprehensive report of nuclear and organellar SSRs in Juglans and the generation of validated SSR primers will be a useful resource for future genetic analyses, walnut breeding programs, high-level taxonomic evaluations, and genomic studies in Juglandaceae.

  • Genomic Variation Among and Within Six Juglans Species
    G3: Genes|Genomes|Genetics, 2018
    Co-Authors: Kristian Stevens, Keith Woeste, Sandeep Chakraborty, Marc W. Crepeau, Charles A. Leslie, Pedro J. Martínez-garcía, Daniela Puiu, Jeanne Romero-severson, Mark V. Coggeshall, Abhaya M Dandekar
    Abstract:

    Genomic analysis in Juglans (walnuts) is expected to transform the breeding and agricultural production of both nuts and lumber. To that end, we report here the determination of reference sequences for six additional relatives of Juglans regia: Juglans sigillata (also from section Dioscaryon), Juglans nigra, Juglans microcarpa, Juglans hindsii (from section Rhysocaryon), Juglans cathayensis (from section Cardiocaryon), and the closely related Pterocarya stenoptera While these are 'draft' genomes, ranging in size between 640Mbp and 990Mbp, their contiguities and accuracies can support powerful annotations of genomic variation that are often the foundation of new avenues of research and breeding. We annotated nucleotide divergence and synteny by creating complete pairwise alignments of each reference genome to the remaining six. In addition, we have re-sequenced a sample of accessions from four Juglans species (including regia). The variation discovered in these surveys comprises a critical resource for experimentation and breeding, as well as a solid complementary annotation. To demonstrate the potential of these resources the structural and sequence variation in and around the polyphenol oxidase loci, PPO1 and PPO2 were investigated. As reported for other seed crops variation in this gene is implicated in the domestication of walnuts. The apparently Juglandaceae specific PPO1 duplicate shows accelerated divergence and an excess of amino acid replacement on the lineage leading to accessions of the domesticated nut crop species, Juglans regia and sigillata.

  • Completion of the Chloroplast Genomes of Five Chinese Juglans and Their Contribution to Chloroplast Phylogeny.
    Frontiers in Plant Science, 2017
    Co-Authors: Keith Woeste, Peng Zhao
    Abstract:

    Juglans L. (walnuts and butternuts) is an economically and ecologically important genus in the family Juglandaceae. All Juglans are important nut and timber trees. Juglans regia (Common walnut), J. sigillata (Iron walnut), J. cathayensis (Chinese walnut), J. hopeiensis (Ma walnut), and J. mandshurica (Manchurian walnut) are native to or naturalized in China. A strongly supported phylogeny of these five species is not available due to a lack of informative molecular markers. We compared complete chloroplast genomes and determined the phylogenetic relationships among the five Chinese Juglans using IIumina sequencing. The plastid genomes ranged from 159,714 to 160,367 bp encoding 128 functional genes, including 88 protein-coding genes and 40 tRNA genes each. A complete map of the variability across the genomes of the five Juglans species was produced that included single nucleotide variants, indels (insertions and deletions), and large structural variants, as well as differences in simple sequence repeats (SSR) and repeat sequences. Molecular phylogeny strongly supported division of the five walnut species into two previously recognized sections (Juglans/Dioscaryon and Cardiocaryon) with a 100 % bootstrap (BS) value using the complete cp genomes, protein coding sequences (CDS), and the introns and spacers (IGS) data. The availability of these genomes will provide genetic information for identifying species and hybrids, taxonomy, phylogeny, and evolution in Juglans, and also provide insight into utilization of Juglans plants.

Abhaya M Dandekar - One of the best experts on this subject based on the ideXlab platform.

  • comparative genomics of six Juglans species reveals disease associated gene family contractions
    Plant Journal, 2020
    Co-Authors: Alexander J Trouerntrend, Taylor Falk, Sumaira Zaman, Madison Caballero, David B Neale, Kristian Stevens, Charles H Langley, Abhaya M Dandekar, Jill L. Wegrzyn
    Abstract:

    Juglans (walnuts), the most speciose genus in the walnut family (Juglandaceae), represents most of the family's commercially valuable fruit and wood-producing trees. It includes several species used as rootstock for their resistance to various abiotic and biotic stressors. We present the full structural and functional genome annotations of six Juglans species and one outgroup within Juglandaceae (Juglans regia, J. cathayensis, J. hindsii, J. microcarpa, J. nigra, J. sigillata and Pterocarya stenoptera) produced using BRAKER2 semi-unsupervised gene prediction pipeline and additional tools. For each annotation, gene predictors were trained using 19 tissue-specific J. regia transcriptomes aligned to the genomes. Additional functional evidence and filters were applied to multi-exonic and mono-exonic putative genes to yield between 27 000 and 44 000 high-confidence gene models per species. Comparison of gene models to the BUSCO embryophyta dataset suggested that, on average, genome annotation completeness was 85.6%. We utilized these high-quality annotations to assess gene family evolution within Juglans, and among Juglans and selected Eurosid species. We found notable contractions in several gene families in J. hindsii, including disease resistance-related wall-associated kinase (WAK), Catharanthus roseus receptor-like kinase (CrRLK1L) and others involved in abiotic stress response. Finally, we confirmed an ancient whole-genome duplication that took place in a common ancestor of Juglandaceae using site substitution comparative analysis.

  • comparative genomics of six Juglans species reveals disease associated gene family contractions
    bioRxiv, 2019
    Co-Authors: Alexander J Trouerntrend, Taylor Falk, Sumaira Zaman, Madison Caballero, David B Neale, Kristian Stevens, Charles H Langley, Abhaya M Dandekar, Jill L. Wegrzyn
    Abstract:

    ABSTRACT Juglans (walnuts), the most speciose genus in the walnut family (Juglandaceae) represents most of the family’s commercially valuable fruit and wood-producing trees. It includes several species used as rootstock in agriculture for their resistance to various abiotic and biotic stressors. We present the full structural and functional genome annotations of six Juglans species and one outgroup within Juglandaceae (Juglans regia, J. cathayensis, J. hindsii, J. microcarpa, J. nigra, J. sigillata and Pterocarya stenoptera) produced using BRAKER2 semi-unsupervised gene prediction pipeline and additional tools. For each annotation, gene predictors were trained using 19 tissue-specific J. regia transcriptomes aligned to the genomes. Additional functional evidence and filters were applied to multi-exonic and mono-exonic putative genes to yield between 27,000 and 44,000 high-confidence gene models per species. Comparison of gene models to the BUSCO embryophyta dataset suggested that, on average, genome annotation completeness was 85.6%. We utilized these high-quality annotations to assess gene family evolution within Juglans and among Juglans and selected Eurosid species. We found notable contractions in several gene families in J. hindsii, including disease resistance-related Wall-associated Kinase (WAK) and Catharanthus roseus Receptor-like Kinase (CrRLK1L) and others involved in abiotic stress response. Finally, we confirmed an ancient whole genome duplication that took place in a common ancestor of Juglandaceae using site substitution comparative analysis.

  • Comparative Genomics of Six Juglans Species Reveals Patterns of Disease-associated Gene Family Contractions.
    bioRxiv, 2019
    Co-Authors: Alexander J. Trouern-trend, Taylor Falk, Sumaira Zaman, Madison Caballero, David B Neale, Kristian Stevens, Charles H Langley, Abhaya M Dandekar, Jill L. Wegrzyn
    Abstract:

    Juglans (walnuts), the most speciose genus in the walnut family (Juglandaceae) represents most of the family9s commercially valuable fruit and wood-producing trees and includes several species used as rootstock in agriculture for their resistance to various abiotic and biotic stressors. We present the full structural and functional genome annotations of six Juglans species and one outgroup within Juglandaceae (Juglans regia, J. cathayensis, J. hindsii, J. microcarpa, J. nigra, J. sigillata and Pterocarya stenoptera) produced using BRAKER2 semi-unsupervised gene prediction pipeline and additional in-house developed tools. For each annotation, gene predictors were trained using 19 tissue-specific J. regia transcriptomes aligned to the genomes. Additional functional evidence and filters were applied to multiexonic and monoexonic putative genes to yield between 27,000 and 44,000 high-confidence gene models per species. Comparison of gene models to the BUSCO embryophyta dataset suggested that, on average, genome annotation completeness was 89.6%. We utilized these high quality annotations to assess gene family evolution within Juglans and among Juglans and selected Eurosid species, which revealed significant contractions in several gene families in J. hindsii including disease resistance-related Wall-associated Kinase (WAK) and Catharanthus roseus Receptor-like Kinase (CrRLK1L) and others involved in abiotic stress response. Finally, we confirmed an ancient whole genome duplication that took place in a common ancestor of Juglandaceae using site substitution comparative analysis.

  • Genomic Variation Among and Within Six Juglans Species
    G3: Genes|Genomes|Genetics, 2018
    Co-Authors: Kristian Stevens, Keith Woeste, Sandeep Chakraborty, Marc W. Crepeau, Charles A. Leslie, Pedro J. Martínez-garcía, Daniela Puiu, Jeanne Romero-severson, Mark V. Coggeshall, Abhaya M Dandekar
    Abstract:

    Genomic analysis in Juglans (walnuts) is expected to transform the breeding and agricultural production of both nuts and lumber. To that end, we report here the determination of reference sequences for six additional relatives of Juglans regia: Juglans sigillata (also from section Dioscaryon), Juglans nigra, Juglans microcarpa, Juglans hindsii (from section Rhysocaryon), Juglans cathayensis (from section Cardiocaryon), and the closely related Pterocarya stenoptera While these are 'draft' genomes, ranging in size between 640Mbp and 990Mbp, their contiguities and accuracies can support powerful annotations of genomic variation that are often the foundation of new avenues of research and breeding. We annotated nucleotide divergence and synteny by creating complete pairwise alignments of each reference genome to the remaining six. In addition, we have re-sequenced a sample of accessions from four Juglans species (including regia). The variation discovered in these surveys comprises a critical resource for experimentation and breeding, as well as a solid complementary annotation. To demonstrate the potential of these resources the structural and sequence variation in and around the polyphenol oxidase loci, PPO1 and PPO2 were investigated. As reported for other seed crops variation in this gene is implicated in the domestication of walnuts. The apparently Juglandaceae specific PPO1 duplicate shows accelerated divergence and an excess of amino acid replacement on the lineage leading to accessions of the domesticated nut crop species, Juglans regia and sigillata.

E Barbas - One of the best experts on this subject based on the ideXlab platform.