Low-Temperature

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 300 Experts worldwide ranked by ideXlab platform

Christian Vincent - One of the best experts on this subject based on the ideXlab platform.

  • strong changes in englacial temperatures despite insignificant changes in ice thickness at dome du gouter glacier mont blanc area
    The Cryosphere, 2020
    Co-Authors: Emmanuel Le Meur, Luc Piard, Olivier Laarman, Philippe Possenti, Bruno Jourdain, Vladimir Mikhalenko, Patrick Ginot, Christian Vincent, Adrien Gilbert, Delphine Six
    Abstract:

    Abstract. The response of very high elevation glaciated areas on Mont Blanc to climate change has been analyzed using observations and numerical modeling. Unlike the changes at low elevations, we observe very low glacier thickness changes, of about −2.6 m on the average since 1993. The slight changes in horizontal ice flow velocities and submergence velocities suggest a decrease of about 10 % in ice flux and surface mass balance. This is due to snow accumulation changes and is consistent with the precipitation decrease observed in meteorological data. Conversely, measurements performed in deep boreholes since 1994 reveal strong changes in englacial temperature reaching 1.5 °C at a depth of 50 m. We conclude that at such very high elevations, current changes in climate do not lead to visible changes in glacier thickness but cause invisible changes within the glacier in terms of englacial temperatures. Our analysis from numerical modeling shows that glacier near-surface temperature warming is enhanced by increasing melt-frequency at high elevations although the impact on surface mass balance is low. This results in a non-linear response of englacial temperature to currently rising air temperatures. In addition, borehole temperature inversion including a new dataset confirms previous findings of similar air temperature changes at high and low elevations in the Alps.

  • strong changes in englacial temperatures despite insignificantchanges in ice thickness at dome du gouter glacier mont blanc area
    The Cryosphere Discussions, 2019
    Co-Authors: Emmanuel Le Meur, Luc Piard, Olivier Laarman, Philippe Possenti, Bruno Jourdain, Vladimir Mikhalenko, Patrick Ginot, Christian Vincent, Adrien Gilbert, Delphine Six
    Abstract:

    Abstract. The response of very high elevation glaciated areas on Mont Blanc to climate change has been analyzed using observations and numerical modeling. Unlike the changes at low elevations, we observe very low glacier thickness changes, of about −2.6 m on the average since 1993. The slight changes in horizontal ice flow velocities and submergence velocities suggest a decrease of about 10 % in ice flux and surface mass balance. This is due to snow accumulation changes and is consistent with the precipitation decrease observed in meteorological data. Conversely, measurements performed in deep boreholes since 1994 reveal strong changes in englacial temperature reaching 1.5 °C at a depth of 50 m. We conclude that at such very high elevations, current changes in climate do not lead to visible changes in glacier thickness but cause invisible changes within the glacier in terms of englacial temperatures. Our analysis from numerical modeling shows that glacier near-surface temperature warming is enhanced by increasing melt-frequency at high elevations although the impact on surface mass balance is low. This results in a non-linear response of englacial temperature to currently rising air temperatures. In addition, borehole temperature inversion including a new dataset confirms previous findings of similar air temperature changes at high and low elevations in the Alps.

  • Atmospheric temperature changes over the 20th century at very high elevations in the European Alps from englacial temperatures
    Geophysical Research Letters, 2013
    Co-Authors: A. Gilbert, Christian Vincent
    Abstract:

    [1] Given the paucity of observations, a great deal of uncertainty remains concerning temperature changes at very high altitudes over the last century. Englacial temperature measurements performed in boreholes provide a very good indicator of atmospheric temperatures for very high elevations although they are not directly related to air temperatures. Temperature profiles from seven deep boreholes drilled at three different sites between 4240 and 4300 m above sea level in the Mont Blanc area (French Alps) have been analyzed using a heat flow model and a Bayesian inverse modeling approach. Atmospheric temperature changes over the last century were estimated by simultaneous inversion of these temperature profiles. A mean warming rate of 0.14°C/decade between 1900 and 2004 was found. This is similar to the observed regional low altitude trend in the northwestern Alps, suggesting that air temperature trends are not altitude dependent.

Delphine Six - One of the best experts on this subject based on the ideXlab platform.

  • strong changes in englacial temperatures despite insignificant changes in ice thickness at dome du gouter glacier mont blanc area
    The Cryosphere, 2020
    Co-Authors: Emmanuel Le Meur, Luc Piard, Olivier Laarman, Philippe Possenti, Bruno Jourdain, Vladimir Mikhalenko, Patrick Ginot, Christian Vincent, Adrien Gilbert, Delphine Six
    Abstract:

    Abstract. The response of very high elevation glaciated areas on Mont Blanc to climate change has been analyzed using observations and numerical modeling. Unlike the changes at low elevations, we observe very low glacier thickness changes, of about −2.6 m on the average since 1993. The slight changes in horizontal ice flow velocities and submergence velocities suggest a decrease of about 10 % in ice flux and surface mass balance. This is due to snow accumulation changes and is consistent with the precipitation decrease observed in meteorological data. Conversely, measurements performed in deep boreholes since 1994 reveal strong changes in englacial temperature reaching 1.5 °C at a depth of 50 m. We conclude that at such very high elevations, current changes in climate do not lead to visible changes in glacier thickness but cause invisible changes within the glacier in terms of englacial temperatures. Our analysis from numerical modeling shows that glacier near-surface temperature warming is enhanced by increasing melt-frequency at high elevations although the impact on surface mass balance is low. This results in a non-linear response of englacial temperature to currently rising air temperatures. In addition, borehole temperature inversion including a new dataset confirms previous findings of similar air temperature changes at high and low elevations in the Alps.

  • strong changes in englacial temperatures despite insignificantchanges in ice thickness at dome du gouter glacier mont blanc area
    The Cryosphere Discussions, 2019
    Co-Authors: Emmanuel Le Meur, Luc Piard, Olivier Laarman, Philippe Possenti, Bruno Jourdain, Vladimir Mikhalenko, Patrick Ginot, Christian Vincent, Adrien Gilbert, Delphine Six
    Abstract:

    Abstract. The response of very high elevation glaciated areas on Mont Blanc to climate change has been analyzed using observations and numerical modeling. Unlike the changes at low elevations, we observe very low glacier thickness changes, of about −2.6 m on the average since 1993. The slight changes in horizontal ice flow velocities and submergence velocities suggest a decrease of about 10 % in ice flux and surface mass balance. This is due to snow accumulation changes and is consistent with the precipitation decrease observed in meteorological data. Conversely, measurements performed in deep boreholes since 1994 reveal strong changes in englacial temperature reaching 1.5 °C at a depth of 50 m. We conclude that at such very high elevations, current changes in climate do not lead to visible changes in glacier thickness but cause invisible changes within the glacier in terms of englacial temperatures. Our analysis from numerical modeling shows that glacier near-surface temperature warming is enhanced by increasing melt-frequency at high elevations although the impact on surface mass balance is low. This results in a non-linear response of englacial temperature to currently rising air temperatures. In addition, borehole temperature inversion including a new dataset confirms previous findings of similar air temperature changes at high and low elevations in the Alps.

Adrien Gilbert - One of the best experts on this subject based on the ideXlab platform.

  • strong changes in englacial temperatures despite insignificant changes in ice thickness at dome du gouter glacier mont blanc area
    The Cryosphere, 2020
    Co-Authors: Emmanuel Le Meur, Luc Piard, Olivier Laarman, Philippe Possenti, Bruno Jourdain, Vladimir Mikhalenko, Patrick Ginot, Christian Vincent, Adrien Gilbert, Delphine Six
    Abstract:

    Abstract. The response of very high elevation glaciated areas on Mont Blanc to climate change has been analyzed using observations and numerical modeling. Unlike the changes at low elevations, we observe very low glacier thickness changes, of about −2.6 m on the average since 1993. The slight changes in horizontal ice flow velocities and submergence velocities suggest a decrease of about 10 % in ice flux and surface mass balance. This is due to snow accumulation changes and is consistent with the precipitation decrease observed in meteorological data. Conversely, measurements performed in deep boreholes since 1994 reveal strong changes in englacial temperature reaching 1.5 °C at a depth of 50 m. We conclude that at such very high elevations, current changes in climate do not lead to visible changes in glacier thickness but cause invisible changes within the glacier in terms of englacial temperatures. Our analysis from numerical modeling shows that glacier near-surface temperature warming is enhanced by increasing melt-frequency at high elevations although the impact on surface mass balance is low. This results in a non-linear response of englacial temperature to currently rising air temperatures. In addition, borehole temperature inversion including a new dataset confirms previous findings of similar air temperature changes at high and low elevations in the Alps.

  • strong changes in englacial temperatures despite insignificantchanges in ice thickness at dome du gouter glacier mont blanc area
    The Cryosphere Discussions, 2019
    Co-Authors: Emmanuel Le Meur, Luc Piard, Olivier Laarman, Philippe Possenti, Bruno Jourdain, Vladimir Mikhalenko, Patrick Ginot, Christian Vincent, Adrien Gilbert, Delphine Six
    Abstract:

    Abstract. The response of very high elevation glaciated areas on Mont Blanc to climate change has been analyzed using observations and numerical modeling. Unlike the changes at low elevations, we observe very low glacier thickness changes, of about −2.6 m on the average since 1993. The slight changes in horizontal ice flow velocities and submergence velocities suggest a decrease of about 10 % in ice flux and surface mass balance. This is due to snow accumulation changes and is consistent with the precipitation decrease observed in meteorological data. Conversely, measurements performed in deep boreholes since 1994 reveal strong changes in englacial temperature reaching 1.5 °C at a depth of 50 m. We conclude that at such very high elevations, current changes in climate do not lead to visible changes in glacier thickness but cause invisible changes within the glacier in terms of englacial temperatures. Our analysis from numerical modeling shows that glacier near-surface temperature warming is enhanced by increasing melt-frequency at high elevations although the impact on surface mass balance is low. This results in a non-linear response of englacial temperature to currently rising air temperatures. In addition, borehole temperature inversion including a new dataset confirms previous findings of similar air temperature changes at high and low elevations in the Alps.

Vladimir Mikhalenko - One of the best experts on this subject based on the ideXlab platform.

  • strong changes in englacial temperatures despite insignificant changes in ice thickness at dome du gouter glacier mont blanc area
    The Cryosphere, 2020
    Co-Authors: Emmanuel Le Meur, Luc Piard, Olivier Laarman, Philippe Possenti, Bruno Jourdain, Vladimir Mikhalenko, Patrick Ginot, Christian Vincent, Adrien Gilbert, Delphine Six
    Abstract:

    Abstract. The response of very high elevation glaciated areas on Mont Blanc to climate change has been analyzed using observations and numerical modeling. Unlike the changes at low elevations, we observe very low glacier thickness changes, of about −2.6 m on the average since 1993. The slight changes in horizontal ice flow velocities and submergence velocities suggest a decrease of about 10 % in ice flux and surface mass balance. This is due to snow accumulation changes and is consistent with the precipitation decrease observed in meteorological data. Conversely, measurements performed in deep boreholes since 1994 reveal strong changes in englacial temperature reaching 1.5 °C at a depth of 50 m. We conclude that at such very high elevations, current changes in climate do not lead to visible changes in glacier thickness but cause invisible changes within the glacier in terms of englacial temperatures. Our analysis from numerical modeling shows that glacier near-surface temperature warming is enhanced by increasing melt-frequency at high elevations although the impact on surface mass balance is low. This results in a non-linear response of englacial temperature to currently rising air temperatures. In addition, borehole temperature inversion including a new dataset confirms previous findings of similar air temperature changes at high and low elevations in the Alps.

  • strong changes in englacial temperatures despite insignificantchanges in ice thickness at dome du gouter glacier mont blanc area
    The Cryosphere Discussions, 2019
    Co-Authors: Emmanuel Le Meur, Luc Piard, Olivier Laarman, Philippe Possenti, Bruno Jourdain, Vladimir Mikhalenko, Patrick Ginot, Christian Vincent, Adrien Gilbert, Delphine Six
    Abstract:

    Abstract. The response of very high elevation glaciated areas on Mont Blanc to climate change has been analyzed using observations and numerical modeling. Unlike the changes at low elevations, we observe very low glacier thickness changes, of about −2.6 m on the average since 1993. The slight changes in horizontal ice flow velocities and submergence velocities suggest a decrease of about 10 % in ice flux and surface mass balance. This is due to snow accumulation changes and is consistent with the precipitation decrease observed in meteorological data. Conversely, measurements performed in deep boreholes since 1994 reveal strong changes in englacial temperature reaching 1.5 °C at a depth of 50 m. We conclude that at such very high elevations, current changes in climate do not lead to visible changes in glacier thickness but cause invisible changes within the glacier in terms of englacial temperatures. Our analysis from numerical modeling shows that glacier near-surface temperature warming is enhanced by increasing melt-frequency at high elevations although the impact on surface mass balance is low. This results in a non-linear response of englacial temperature to currently rising air temperatures. In addition, borehole temperature inversion including a new dataset confirms previous findings of similar air temperature changes at high and low elevations in the Alps.

Bruno Jourdain - One of the best experts on this subject based on the ideXlab platform.

  • strong changes in englacial temperatures despite insignificant changes in ice thickness at dome du gouter glacier mont blanc area
    The Cryosphere, 2020
    Co-Authors: Emmanuel Le Meur, Luc Piard, Olivier Laarman, Philippe Possenti, Bruno Jourdain, Vladimir Mikhalenko, Patrick Ginot, Christian Vincent, Adrien Gilbert, Delphine Six
    Abstract:

    Abstract. The response of very high elevation glaciated areas on Mont Blanc to climate change has been analyzed using observations and numerical modeling. Unlike the changes at low elevations, we observe very low glacier thickness changes, of about −2.6 m on the average since 1993. The slight changes in horizontal ice flow velocities and submergence velocities suggest a decrease of about 10 % in ice flux and surface mass balance. This is due to snow accumulation changes and is consistent with the precipitation decrease observed in meteorological data. Conversely, measurements performed in deep boreholes since 1994 reveal strong changes in englacial temperature reaching 1.5 °C at a depth of 50 m. We conclude that at such very high elevations, current changes in climate do not lead to visible changes in glacier thickness but cause invisible changes within the glacier in terms of englacial temperatures. Our analysis from numerical modeling shows that glacier near-surface temperature warming is enhanced by increasing melt-frequency at high elevations although the impact on surface mass balance is low. This results in a non-linear response of englacial temperature to currently rising air temperatures. In addition, borehole temperature inversion including a new dataset confirms previous findings of similar air temperature changes at high and low elevations in the Alps.

  • strong changes in englacial temperatures despite insignificantchanges in ice thickness at dome du gouter glacier mont blanc area
    The Cryosphere Discussions, 2019
    Co-Authors: Emmanuel Le Meur, Luc Piard, Olivier Laarman, Philippe Possenti, Bruno Jourdain, Vladimir Mikhalenko, Patrick Ginot, Christian Vincent, Adrien Gilbert, Delphine Six
    Abstract:

    Abstract. The response of very high elevation glaciated areas on Mont Blanc to climate change has been analyzed using observations and numerical modeling. Unlike the changes at low elevations, we observe very low glacier thickness changes, of about −2.6 m on the average since 1993. The slight changes in horizontal ice flow velocities and submergence velocities suggest a decrease of about 10 % in ice flux and surface mass balance. This is due to snow accumulation changes and is consistent with the precipitation decrease observed in meteorological data. Conversely, measurements performed in deep boreholes since 1994 reveal strong changes in englacial temperature reaching 1.5 °C at a depth of 50 m. We conclude that at such very high elevations, current changes in climate do not lead to visible changes in glacier thickness but cause invisible changes within the glacier in terms of englacial temperatures. Our analysis from numerical modeling shows that glacier near-surface temperature warming is enhanced by increasing melt-frequency at high elevations although the impact on surface mass balance is low. This results in a non-linear response of englacial temperature to currently rising air temperatures. In addition, borehole temperature inversion including a new dataset confirms previous findings of similar air temperature changes at high and low elevations in the Alps.