LSD1

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 45069 Experts worldwide ranked by ideXlab platform

Hong-min Liu - One of the best experts on this subject based on the ideXlab platform.

  • Pharmacoepigenetics of LSD1 Inhibitors in Cancer
    Pharmacoepigenetics, 2019
    Co-Authors: Hong-min Liu
    Abstract:

    Abstract LSD1 can specifically remove methyl groups of H3K4me1/2, H3K9me1/2, and some nonhistone substrates, mediates many cellular signaling pathways, and is highly overexpressed in different types of cancers. Its dysregulation is closely related to the development of cancers. Pharmacological inhibition could suppress cancer cell differentiation, proliferation, invasion, and migration. Therefore, LSD1 has been widely recognized as a promising therapeutic target for cancer therapy. To date, a large number of LSD1 inhibitors have been reported, and just a few TCP-based irreversible LSD1 inhibitors or their combination with other therapeutic agents are currently undergoing clinical assessment for the treatment of AML, SCLC, etc. In this chapter we highlight the recent development of LSD1 inhibitors with a particular emphasis on TCP-based inhibitors in clinical trials, natural products, and some selected reversible LSD1 inhibitors.

  • Ligand-based design, synthesis and biological evaluation of xanthine derivatives as LSD1/KDM1A inhibitors.
    European journal of medicinal chemistry, 2018
    Co-Authors: Yongfang Yao, Yi-chao Zheng, Siqi Feng, Junbiao Chang, Hong-min Liu
    Abstract:

    Abstract Histone lysine specific demethylase 1 (LSD1) has been recognized as an important epigenetic target for disease treatment. To date, a large number of LSD1 inhibitors have been developed, some of which are currently being evaluated in clinical trials for the treatment of cancers, virus infection, and neurodegenerative diseases. In this paper, we for the first time reported the ligand-based design of fragment-like xanthine derivatives as LSD1 inhibitors, of which compound 4 possessed acceptable pharmacological inhibition against LSD1 (IC50 = 6.45 μM) and favorable fragment-like nature, and therefore could be used as a promising template to design new LSD1 inhibitors. Interestingly, compounds 6c and 6i strongly suppressed growth of MGC-803 cells partly dependent on their LSD1 inhibition, and were also found to be able to inhibit BRD4 and IDO1. The docking studies were performed to rationalize the biochemical potency against LSD1 and to explain the observed activity discrepancy. The proof-of-concept work may provide an example for other natural ligand-based drug design.

  • discovery of 1 2 3 triazolo 4 5 d pyrimidine derivatives as novel LSD1 inhibitors
    ACS Medicinal Chemistry Letters, 2017
    Co-Authors: Xueqi Liu, Yi-chao Zheng, Pengfei Geng, Fengzhi Suo, Taoqian Zhao, Zhaoqing Zhou, Chenxi Huang, Hong-min Liu
    Abstract:

    Lysine specific demethylase 1 (LSD1) plays a pivotal role in regulating the lysine methylation. The aberrant overexpression of LSD1 has been reported to be involved in the progression of certain human malignant tumors. Abrogation of LSD1 with RNAi or small molecule inhibitors may lead to the inhibition of cancer proliferation and migration. Herein, a series of [1,2,3]triazolo[4,5-d]pyrimidine derivatives were synthesized and evaluated for their LSD1 inhibitory effects. The structure–activity relationship studies (SARs) were conducted by exploring three regions of this scaffold, leading to the discovery of compound 27 as potent LSD1 inhibitor (IC50 = 0.564 μM). Compound 27 was identified as a reversible LSD1 inhibitor and showed certain selectivity to LSD1 over monoamine oxidase A/B (MAO-A/B). When MGC-803 cells were treated with compound 27, the activity of LSD1 can be significantly inhibited, and the cell migration ability was also suppressed. Docking studies indicated that the hydrogen interaction betwe...

  • Irreversible LSD1 Inhibitors: Application of Tranylcypromine and Its Derivatives in Cancer Treatment.
    Current topics in medicinal chemistry, 2016
    Co-Authors: Yi-chao Zheng, Wen Zhao, Guo Z. Jiang, Xue J. Feng, Xiao Y. Chu, Hong-min Liu
    Abstract:

    Due to the increasing costs and time consuming for new drug discovery, a large number of pharmaceutical firms have chosen to modify the existing drug molecules for repositioning candidates with new or improved properties, especially those with severe adverse effects, thereby accelerating the drug discovery process. Such strategy has witnessed its success with several examples reported. As the first identified histone lysine specific demethylase, lysine specific demethylase 1 (LSD1) is classified as a member of monoamine oxidase (MAO) superfamily, and specifically removes mono- and dimethylated histone 3 lysine 4 (H3K4) and H3 lysine 9 (H3K9). It has been reported that LSD1 and its downstream targets are involved in cancer cell growth and metastasis. Meanwhile, it is overexpressed in a variety of tumor cells. Inactivating LSD1 specifically inhibits tumor progression and metastasis. Hence, LSD1 inhibition may represent a new and promising direction in anti-cancer drug discovery. Based on the structure and cofactor of LSD1, some clinical applied MAO inhibitors have been identified as LSD1 inactivators. Among them, tranylcypromine presented the most potency against LSD1 and its derivatives were further developed by medicinal chemists in order to develop potent and selective LSD1 inhibitors. Currently, a number of tranylcypromine based LSD1 inhibitors have been developed and two of them, ORY-1001 and GSK2879552, are in clinical trials for cancer treatment. This review highlights recent advances in the repurposing of tranylcypromine and its derivatives as irreversible LSD1 inhibitors for cancer treatment, which are conventionally used for the treatment of depression.

  • TCPs: privileged scaffolds for identifying potent LSD1 inhibitors for cancer therapy.
    Epigenomics, 2016
    Co-Authors: Yi-chao Zheng, Zhe-sheng Chen, Ying Liu, Hong-min Liu
    Abstract:

    Since the first lysine-specific demethylase (KDM), lysine-specific demethylase 1 (LSD1), was characterized in 2004, several families of KDMs have been identified. LSD1 can specifically demethylate H3K4me1/2, H3K9me1/2 as well as some nonhistone substrates. It has been demonstrated to be an oncogene as well as a drug target. Hence, tens of small-molecule LSD1 inhibitors have been designed, synthesized and applied for cancer treatment. However, the two LSD1 inhibitors that have been advanced into early phase clinical trials are trans-2-phenylcyclopropylamine (TCP) derivatives, which indicate that TCP is a druggable scaffold for LSD1 inhibitor. Here, we review the design, synthesis and properties of reported TCP-based LSD1 inhibitors as well as their biological roles.

Shuang Wang - One of the best experts on this subject based on the ideXlab platform.

  • LSD1 coordinates with the sin3a hdac complex and maintains sensitivity to chemotherapy in breast cancer
    Journal of Molecular Cell Biology, 2018
    Co-Authors: Yang Yang, Wei Huang, Rongfang Qiu, Ruiqiong Liu, Yi Zeng, Jie Gao, Yu Zheng, Yongqiang Hou, Shuang Wang
    Abstract:

    Lysine-specific demethylase 1 (LSD1) was the first histone demethylase identified as catalysing the removal of mono- and di-methylation marks on histone H3-K4. Despite the potential broad action of LSD1 in transcription regulation, recent studies indicate that LSD1 may coordinate with multiple epigenetic regulatory complexes including CoREST/HDAC complex, NuRD complex, SIRT1, and PRC2, implying complicated mechanistic actions of this seemingly simple enzyme. Here, we report that LSD1 is also an integral component of the SIN3A/HDAC complex. Transcriptional target analysis using ChIP-on-chip technology revealed that the LSD1/SIN3A/HDAC complex targets several cellular signalling pathways that are critically involved in cell proliferation, survival, metastasis, and apoptosis, especially the p53 signalling pathway. We have demonstrated that LSD1 coordinates with the SIN3A/HDAC complex in inhibiting a series of genes such as CASP7, TGFB2, CDKN1A(p21), HIF1A, TERT, and MDM2, some of which are oncogenic. Our experiments also found that LSD1 and SIN3A are required for optimal survival and growth of breast cancer cells while also essential for the maintenance of epithelial homoeostasis and chemosensitivity. Our data indicate that LSD1 is a functional alternative subunit of the SIN3A/HDAC complex, providing a molecular basis for the interplay of histone demethylation and deacetylation in chromatin remodelling, and suggest that the LSD1/SIN3A/HDAC complex could be a target for breast cancer therapeutic strategies.

  • LSD1 coordinates with the SIN3A/HDAC complex and maintains sensitivity to chemotherapy in breast cancer.
    Journal of molecular cell biology, 2018
    Co-Authors: Yang Yang, Wei Huang, Rongfang Qiu, Ruiqiong Liu, Yi Zeng, Jie Gao, Yu Zheng, Yongqiang Hou, Shuang Wang
    Abstract:

    Lysine-specific demethylase 1 (LSD1) was the first histone demethylase identified as catalysing the removal of mono- and di-methylation marks on histone H3-K4. Despite the potential broad action of LSD1 in transcription regulation, recent studies indicate that LSD1 may coordinate with multiple epigenetic regulatory complexes including CoREST/HDAC complex, NuRD complex, SIRT1, and PRC2, implying complicated mechanistic actions of this seemingly simple enzyme. Here, we report that LSD1 is also an integral component of the SIN3A/HDAC complex. Transcriptional target analysis using ChIP-on-chip technology revealed that the LSD1/SIN3A/HDAC complex targets several cellular signalling pathways that are critically involved in cell proliferation, survival, metastasis, and apoptosis, especially the p53 signalling pathway. We have demonstrated that LSD1 coordinates with the SIN3A/HDAC complex in inhibiting a series of genes such as CASP7, TGFB2, CDKN1A(p21), HIF1A, TERT, and MDM2, some of which are oncogenic. Our experiments also found that LSD1 and SIN3A are required for optimal survival and growth of breast cancer cells while also essential for the maintenance of epithelial homoeostasis and chemosensitivity. Our data indicate that LSD1 is a functional alternative subunit of the SIN3A/HDAC complex, providing a molecular basis for the interplay of histone demethylation and deacetylation in chromatin remodelling, and suggest that the LSD1/SIN3A/HDAC complex could be a target for breast cancer therapeutic strategies.

Yi-chao Zheng - One of the best experts on this subject based on the ideXlab platform.

  • Ligand-based design, synthesis and biological evaluation of xanthine derivatives as LSD1/KDM1A inhibitors.
    European journal of medicinal chemistry, 2018
    Co-Authors: Yongfang Yao, Yi-chao Zheng, Siqi Feng, Junbiao Chang, Hong-min Liu
    Abstract:

    Abstract Histone lysine specific demethylase 1 (LSD1) has been recognized as an important epigenetic target for disease treatment. To date, a large number of LSD1 inhibitors have been developed, some of which are currently being evaluated in clinical trials for the treatment of cancers, virus infection, and neurodegenerative diseases. In this paper, we for the first time reported the ligand-based design of fragment-like xanthine derivatives as LSD1 inhibitors, of which compound 4 possessed acceptable pharmacological inhibition against LSD1 (IC50 = 6.45 μM) and favorable fragment-like nature, and therefore could be used as a promising template to design new LSD1 inhibitors. Interestingly, compounds 6c and 6i strongly suppressed growth of MGC-803 cells partly dependent on their LSD1 inhibition, and were also found to be able to inhibit BRD4 and IDO1. The docking studies were performed to rationalize the biochemical potency against LSD1 and to explain the observed activity discrepancy. The proof-of-concept work may provide an example for other natural ligand-based drug design.

  • discovery of 1 2 3 triazolo 4 5 d pyrimidine derivatives as novel LSD1 inhibitors
    ACS Medicinal Chemistry Letters, 2017
    Co-Authors: Xueqi Liu, Yi-chao Zheng, Pengfei Geng, Fengzhi Suo, Taoqian Zhao, Zhaoqing Zhou, Chenxi Huang, Hong-min Liu
    Abstract:

    Lysine specific demethylase 1 (LSD1) plays a pivotal role in regulating the lysine methylation. The aberrant overexpression of LSD1 has been reported to be involved in the progression of certain human malignant tumors. Abrogation of LSD1 with RNAi or small molecule inhibitors may lead to the inhibition of cancer proliferation and migration. Herein, a series of [1,2,3]triazolo[4,5-d]pyrimidine derivatives were synthesized and evaluated for their LSD1 inhibitory effects. The structure–activity relationship studies (SARs) were conducted by exploring three regions of this scaffold, leading to the discovery of compound 27 as potent LSD1 inhibitor (IC50 = 0.564 μM). Compound 27 was identified as a reversible LSD1 inhibitor and showed certain selectivity to LSD1 over monoamine oxidase A/B (MAO-A/B). When MGC-803 cells were treated with compound 27, the activity of LSD1 can be significantly inhibited, and the cell migration ability was also suppressed. Docking studies indicated that the hydrogen interaction betwe...

  • Irreversible LSD1 Inhibitors: Application of Tranylcypromine and Its Derivatives in Cancer Treatment.
    Current topics in medicinal chemistry, 2016
    Co-Authors: Yi-chao Zheng, Wen Zhao, Guo Z. Jiang, Xue J. Feng, Xiao Y. Chu, Hong-min Liu
    Abstract:

    Due to the increasing costs and time consuming for new drug discovery, a large number of pharmaceutical firms have chosen to modify the existing drug molecules for repositioning candidates with new or improved properties, especially those with severe adverse effects, thereby accelerating the drug discovery process. Such strategy has witnessed its success with several examples reported. As the first identified histone lysine specific demethylase, lysine specific demethylase 1 (LSD1) is classified as a member of monoamine oxidase (MAO) superfamily, and specifically removes mono- and dimethylated histone 3 lysine 4 (H3K4) and H3 lysine 9 (H3K9). It has been reported that LSD1 and its downstream targets are involved in cancer cell growth and metastasis. Meanwhile, it is overexpressed in a variety of tumor cells. Inactivating LSD1 specifically inhibits tumor progression and metastasis. Hence, LSD1 inhibition may represent a new and promising direction in anti-cancer drug discovery. Based on the structure and cofactor of LSD1, some clinical applied MAO inhibitors have been identified as LSD1 inactivators. Among them, tranylcypromine presented the most potency against LSD1 and its derivatives were further developed by medicinal chemists in order to develop potent and selective LSD1 inhibitors. Currently, a number of tranylcypromine based LSD1 inhibitors have been developed and two of them, ORY-1001 and GSK2879552, are in clinical trials for cancer treatment. This review highlights recent advances in the repurposing of tranylcypromine and its derivatives as irreversible LSD1 inhibitors for cancer treatment, which are conventionally used for the treatment of depression.

  • TCPs: privileged scaffolds for identifying potent LSD1 inhibitors for cancer therapy.
    Epigenomics, 2016
    Co-Authors: Yi-chao Zheng, Zhe-sheng Chen, Ying Liu, Hong-min Liu
    Abstract:

    Since the first lysine-specific demethylase (KDM), lysine-specific demethylase 1 (LSD1), was characterized in 2004, several families of KDMs have been identified. LSD1 can specifically demethylate H3K4me1/2, H3K9me1/2 as well as some nonhistone substrates. It has been demonstrated to be an oncogene as well as a drug target. Hence, tens of small-molecule LSD1 inhibitors have been designed, synthesized and applied for cancer treatment. However, the two LSD1 inhibitors that have been advanced into early phase clinical trials are trans-2-phenylcyclopropylamine (TCP) derivatives, which indicate that TCP is a druggable scaffold for LSD1 inhibitor. Here, we review the design, synthesis and properties of reported TCP-based LSD1 inhibitors as well as their biological roles.

  • A Systematic Review of Histone Lysine-Specific Demethylase 1 and Its Inhibitors.
    Medicinal research reviews, 2015
    Co-Authors: Yi-chao Zheng, Zhi-ru Wang, Bai-ling Jiang, Wenjuan Zhou, Xiao-jing Shi, Wang Xixin, Wen Zhao, Hong-min Liu
    Abstract:

    Histone lysine-specific demethylase 1 (LSD1) is the first discovered and reported histone demethylase by Dr. Shi Yang's group in 2004. It is classified as a member of amine oxidase superfamily, the common feature of which is using the flavin adenine dinucleotide (FAD) as its cofactor. Since it is located in cell nucleus and acts as a histone methylation eraser, LSD1 specifically removes mono- or dimethylated histone H3 lysine 4 (H3K4) and H3 lysine 9 (H3K9) through formaldehyde-generating oxidation. It has been indicated that LSD1 and its downstream targets are involved in a wide range of biological courses, including embryonic development and tumor-cell growth and metastasis. LSD1 has been reported to be overexpressed in variety of tumors. Inactivating LSD1 or downregulating its expression inhibits cancer-cell development. LSD1 targeting inhibitors may represent a new insight in anticancer drug discovery. This review summarizes recent studies about LSD1 and mainly focuses on the basic physiological function of LSD1 and its involved mechanisms in pathophysiologic conditions, as well as the development of LSD1 inhibitors as potential anticancer therapeutic agents.

Benoit Laurent - One of the best experts on this subject based on the ideXlab platform.

  • a specific LSD1 kdm1a isoform regulates neuronal differentiation through h3k9 demethylation
    Molecular Cell, 2015
    Co-Authors: Benoit Laurent, Lv Ruitu, Jernej Murn, Kristina Hempel, Ryan Ferrao, Yang Xiang, Shichong Liu, Benjamin A. Garcia
    Abstract:

    Lysine-specific demethylase 1 (LSD1) has been reported to repress and activate transcription by mediating histone H3K4me1/2 and H3K9me1/2 demethylation, respectively. The molecular mechanism that underlies this dual substrate specificity has remained unknown. Here we report that an isoform of LSD1, LSD1+8a, does not have the intrinsic capability to demethylate H3K4me2. Instead, LSD1+8a mediates H3K9me2 demethylation in collaboration with supervillin (SVIL), a new LSD1+8a interacting protein. LSD1+8a knockdown increases H3K9me2, but not H3K4me2, levels at its target promoters and compromises neuronal differentiation. Importantly, SVIL co-localizes to LSD1+8a-bound promoters, and its knockdown mimics the impact of LSD1+8a loss, supporting SVIL as a cofactor for LSD1+8a in neuronal cells. These findings provide insight into mechanisms by which LSD1 mediates H3K9me demethylation and highlight alternative splicing as a means by which LSD1 acquires selective substrate specificities (H3K9 versus H3K4) to differentially control specific gene expression programs in neurons.

  • A Specific LSD1/KDM1A Isoform Regulates Neuronal Differentiation through H3K9 Demethylation
    Molecular cell, 2015
    Co-Authors: Benoit Laurent, Lv Ruitu, Jernej Murn, Kristina Hempel, Ryan Ferrao, Yang Xiang, Shichong Liu, Benjamin A. Garcia
    Abstract:

    Lysine-specific demethylase 1 (LSD1) has been reported to repress and activate transcription by mediating histone H3K4me1/2 and H3K9me1/2 demethylation, respectively. The molecular mechanism that underlies this dual substrate specificity has remained unknown. Here we report that an isoform of LSD1, LSD1+8a, does not have the intrinsic capability to demethylate H3K4me2. Instead, LSD1+8a mediates H3K9me2 demethylation in collaboration with supervillin (SVIL), a new LSD1+8a interacting protein. LSD1+8a knockdown increases H3K9me2, but not H3K4me2, levels at its target promoters and compromises neuronal differentiation. Importantly, SVIL co-localizes to LSD1+8a-bound promoters, and its knockdown mimics the impact of LSD1+8a loss, supporting SVIL as a cofactor for LSD1+8a in neuronal cells. These findings provide insight into mechanisms by which LSD1 mediates H3K9me demethylation and highlight alternative splicing as a means by which LSD1 acquires selective substrate specificities (H3K9 versus H3K4) to differentially control specific gene expression programs in neurons.

  • The histone demethylase LSD1/KDM1A promotes the DNA damage response
    The Journal of cell biology, 2013
    Co-Authors: Nima Mosammaparast, Benoit Laurent, Kristina Hempel, Haeyoung Kim, Yu Zhao, Hui Jun Lim, Mona C. Majid, Sebastian Dango, Yuying Luo, Mathew E. Sowa
    Abstract:

    Histone demethylation is known to regulate transcription, but its role in other processes is largely unknown. We report a role for the histone demethylase LSD1/KDM1A in the DNA damage response (DDR). We show that LSD1 is recruited directly to sites of DNA damage. H3K4 dimethylation, a major substrate for LSD1, is reduced at sites of DNA damage in an LSD1-dependent manner. The E3 ubiquitin ligase RNF168 physically interacts with LSD1 and we find this interaction to be important for LSD1 recruitment to DNA damage sites. Although loss of LSD1 did not affect the initial formation of pH2A.X foci, 53BP1 and BRCA1 complex recruitment were reduced upon LSD1 knockdown. Mechanistically, this was likely a result of compromised histone ubiquitylation preferentially in late S/G2. Consistent with a role in the DDR, knockdown of LSD1 resulted in moderate hypersensitivity to γ-irradiation and increased homologous recombination. Our findings uncover a direct role for LSD1 in the DDR and place LSD1 downstream of RNF168 in the DDR pathway.

  • the histone demethylase LSD1 kdm1a promotes the dna damage response
    Journal of Cell Biology, 2013
    Co-Authors: Nima Mosammaparast, Benoit Laurent, Kristina Hempel, Haeyoung Kim, Yu Zhao, Hui Jun Lim, Mona C. Majid, Sebastian Dango, Yuying Luo, Mathew E. Sowa
    Abstract:

    Histone demethylation is known to regulate transcription, but its role in other processes is largely unknown. We report a role for the histone demethylase LSD1/KDM1A in the DNA damage response (DDR). We show that LSD1 is recruited directly to sites of DNA damage. H3K4 dimethylation, a major substrate for LSD1, is reduced at sites of DNA damage in an LSD1-dependent manner. The E3 ubiquitin ligase RNF168 physically interacts with LSD1 and we find this interaction to be important for LSD1 recruitment to DNA damage sites. Although loss of LSD1 did not affect the initial formation of pH2A.X foci, 53BP1 and BRCA1 complex recruitment were reduced upon LSD1 knockdown. Mechanistically, this was likely a result of compromised histone ubiquitylation preferentially in late S/G2. Consistent with a role in the DDR, knockdown of LSD1 resulted in moderate hypersensitivity to γ-irradiation and increased homologous recombination. Our findings uncover a direct role for LSD1 in the DDR and place LSD1 downstream of RNF168 in the DDR pathway.

Benjamin A. Garcia - One of the best experts on this subject based on the ideXlab platform.

  • a specific LSD1 kdm1a isoform regulates neuronal differentiation through h3k9 demethylation
    Molecular Cell, 2015
    Co-Authors: Benoit Laurent, Lv Ruitu, Jernej Murn, Kristina Hempel, Ryan Ferrao, Yang Xiang, Shichong Liu, Benjamin A. Garcia
    Abstract:

    Lysine-specific demethylase 1 (LSD1) has been reported to repress and activate transcription by mediating histone H3K4me1/2 and H3K9me1/2 demethylation, respectively. The molecular mechanism that underlies this dual substrate specificity has remained unknown. Here we report that an isoform of LSD1, LSD1+8a, does not have the intrinsic capability to demethylate H3K4me2. Instead, LSD1+8a mediates H3K9me2 demethylation in collaboration with supervillin (SVIL), a new LSD1+8a interacting protein. LSD1+8a knockdown increases H3K9me2, but not H3K4me2, levels at its target promoters and compromises neuronal differentiation. Importantly, SVIL co-localizes to LSD1+8a-bound promoters, and its knockdown mimics the impact of LSD1+8a loss, supporting SVIL as a cofactor for LSD1+8a in neuronal cells. These findings provide insight into mechanisms by which LSD1 mediates H3K9me demethylation and highlight alternative splicing as a means by which LSD1 acquires selective substrate specificities (H3K9 versus H3K4) to differentially control specific gene expression programs in neurons.

  • A Specific LSD1/KDM1A Isoform Regulates Neuronal Differentiation through H3K9 Demethylation
    Molecular cell, 2015
    Co-Authors: Benoit Laurent, Lv Ruitu, Jernej Murn, Kristina Hempel, Ryan Ferrao, Yang Xiang, Shichong Liu, Benjamin A. Garcia
    Abstract:

    Lysine-specific demethylase 1 (LSD1) has been reported to repress and activate transcription by mediating histone H3K4me1/2 and H3K9me1/2 demethylation, respectively. The molecular mechanism that underlies this dual substrate specificity has remained unknown. Here we report that an isoform of LSD1, LSD1+8a, does not have the intrinsic capability to demethylate H3K4me2. Instead, LSD1+8a mediates H3K9me2 demethylation in collaboration with supervillin (SVIL), a new LSD1+8a interacting protein. LSD1+8a knockdown increases H3K9me2, but not H3K4me2, levels at its target promoters and compromises neuronal differentiation. Importantly, SVIL co-localizes to LSD1+8a-bound promoters, and its knockdown mimics the impact of LSD1+8a loss, supporting SVIL as a cofactor for LSD1+8a in neuronal cells. These findings provide insight into mechanisms by which LSD1 mediates H3K9me demethylation and highlight alternative splicing as a means by which LSD1 acquires selective substrate specificities (H3K9 versus H3K4) to differentially control specific gene expression programs in neurons.