Luxemburg

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 9585 Experts worldwide ranked by ideXlab platform

Veerle Van Den Eeckhout - One of the best experts on this subject based on the ideXlab platform.

Nicolas Gengler - One of the best experts on this subject based on the ideXlab platform.

  • environmental sensitivity for milk yield in luxembourg and tunisian holsteins by herd management level
    Journal of Dairy Science, 2009
    Co-Authors: Hedi Hammami, B Rekik, Catherine Bastin, Helene Soyeurt, Jeanne Bormann, Jean Stoll, Nicolas Gengler
    Abstract:

    Milk production data of Luxembourg and Tunisian Holstein cows were analyzed using herd management (HM) level. Herds in each country were clustered into high, medium, and low HM levels based on solutions of herd-test-date and herd-year of calving effects from national evaluations. Data from both populations included 730,810 test-day (TD) milk yield records from 87,734 first-lactation cows. A multi-trait, random regression TD model was used to estimate (co)variance components for milk yield within and across country HM levels. Additive genetic and permanent environmental variances of TD milk yields varied with management level in Tunisia and Luxembourg. Additive variances were smaller across HM levels in Tunisia than in Luxembourg, whereas permanent environmental variances were larger in Tunisian HM levels. Highest heritability estimates of 305-d milk yield (0.41 and 0.21) were found in high HM levels, whereas lowest estimates (0.31 and 0.12, respectively) were associated with low HM levels in both countries. Genetic correlations among Luxembourg HM levels were >0.96, whereas those among Tunisian HM levels were below 0.80. Respective rank orders of sires ranged from 0.73 to 0.83 across Luxembourg environments and from 0.33 to 0.42 across Tunisian HM levels indicating high re-ranking of sires in Tunisia and only a scaling effect in Luxembourg. Across-country environment analysis showed that estimates of genetic variance in the high, medium, and low classes of Tunisian environments were 45, 69, and 81% lower, respectively, than the estimate found in the high Luxembourg HM level. Genetic correlations among 305-d milk yields in Tunisian and Luxembourg HM environments ranged from 0.39 to 0.79. The largest estimated genetic correlation was found between the medium Luxembourg and high Tunisian HM levels. Rank correlations for common sires' estimated breeding values among HM environments were low and ranged from 0.19 to 0.39, implying the existence of genotype by environment interaction. These results indicate that daughters of superior sires in Luxembourg have their genetic expression for milk production limited under Tunisian environments. Milk production of cows in the medium and low Luxembourg environments were good predictors of that of their paternal half-sisters in the high Tunisian HM level. Breeding decisions in low-input Tunisian environment should utilize semen from sires with daughters in similar production environments rather than semen of bulls proven in higher management levels.

  • genotype x environment interaction for milk yield in holsteins using luxembourg and tunisian populations
    Journal of Dairy Science, 2008
    Co-Authors: Hedi Hammami, B Rekik, Catherine Bastin, Helene Soyeurt, Jean Stoll, Nicolas Gengler
    Abstract:

    Abstract Test-day (TD) milk yield records of first-lactation Holstein cows in Luxembourg and Tunisia were analyzed using within-and between-country random regression TD models. Edited data used for within-country analysis included 661,453 and 281,913 TD records in Luxembourg and Tunisia, respectively. The joint data included 730,810 TD records of 87,734 cows and 231 common sires. Both data sets covered calving years 1995 to 2006. Fourth-order Legendre polynomials for random effects and a Gibbs sampling method were used to estimate variance components of lactation curve parameters in separate and joint analyses. Genetic variances of the first 3 coefficients from Luxembourg data were 46 to 69% larger than corresponding estimates from the Tunisian data. Inversely, the Tunisian permanent environment variances for the same coefficients were 52 to 65% larger than the Luxembourg ones. Posterior mean heritabilities of 305-d milk yield and persistency, defined as estimated breeding values (EBV) at 280 days in milk-EBV at 80 days in milk, from between-country analysis were 0.42 and 0.12 and 0.19 and 0.08 in Luxembourg and Tunisia, respectively. Heritability estimates for the same traits from within-country analyses, mainly from the Tunisian data, were lower than those from the joint analysis. Genetic correlations for 305-d milk yield and persistency between countries were 0.60 and 0.36. Product moment and rank correlations between EBV of common sires for 305-d milk yield and persistency from within-country analyses were 0.38 and 0.41 and 0.27 and 0.26, respectively. Differences between genetic variances found in both countries reflect different milk production levels. Moreover, low genetic and rank correlations suggest different ranking of sires in the 2 environments, which implies the existence of a genotype × environment interaction for milk yield in Holsteins.

Hedi Hammami - One of the best experts on this subject based on the ideXlab platform.

  • environmental sensitivity for milk yield in luxembourg and tunisian holsteins by herd management level
    Journal of Dairy Science, 2009
    Co-Authors: Hedi Hammami, B Rekik, Catherine Bastin, Helene Soyeurt, Jeanne Bormann, Jean Stoll, Nicolas Gengler
    Abstract:

    Milk production data of Luxembourg and Tunisian Holstein cows were analyzed using herd management (HM) level. Herds in each country were clustered into high, medium, and low HM levels based on solutions of herd-test-date and herd-year of calving effects from national evaluations. Data from both populations included 730,810 test-day (TD) milk yield records from 87,734 first-lactation cows. A multi-trait, random regression TD model was used to estimate (co)variance components for milk yield within and across country HM levels. Additive genetic and permanent environmental variances of TD milk yields varied with management level in Tunisia and Luxembourg. Additive variances were smaller across HM levels in Tunisia than in Luxembourg, whereas permanent environmental variances were larger in Tunisian HM levels. Highest heritability estimates of 305-d milk yield (0.41 and 0.21) were found in high HM levels, whereas lowest estimates (0.31 and 0.12, respectively) were associated with low HM levels in both countries. Genetic correlations among Luxembourg HM levels were >0.96, whereas those among Tunisian HM levels were below 0.80. Respective rank orders of sires ranged from 0.73 to 0.83 across Luxembourg environments and from 0.33 to 0.42 across Tunisian HM levels indicating high re-ranking of sires in Tunisia and only a scaling effect in Luxembourg. Across-country environment analysis showed that estimates of genetic variance in the high, medium, and low classes of Tunisian environments were 45, 69, and 81% lower, respectively, than the estimate found in the high Luxembourg HM level. Genetic correlations among 305-d milk yields in Tunisian and Luxembourg HM environments ranged from 0.39 to 0.79. The largest estimated genetic correlation was found between the medium Luxembourg and high Tunisian HM levels. Rank correlations for common sires' estimated breeding values among HM environments were low and ranged from 0.19 to 0.39, implying the existence of genotype by environment interaction. These results indicate that daughters of superior sires in Luxembourg have their genetic expression for milk production limited under Tunisian environments. Milk production of cows in the medium and low Luxembourg environments were good predictors of that of their paternal half-sisters in the high Tunisian HM level. Breeding decisions in low-input Tunisian environment should utilize semen from sires with daughters in similar production environments rather than semen of bulls proven in higher management levels.

  • genotype x environment interaction for milk yield in holsteins using luxembourg and tunisian populations
    Journal of Dairy Science, 2008
    Co-Authors: Hedi Hammami, B Rekik, Catherine Bastin, Helene Soyeurt, Jean Stoll, Nicolas Gengler
    Abstract:

    Abstract Test-day (TD) milk yield records of first-lactation Holstein cows in Luxembourg and Tunisia were analyzed using within-and between-country random regression TD models. Edited data used for within-country analysis included 661,453 and 281,913 TD records in Luxembourg and Tunisia, respectively. The joint data included 730,810 TD records of 87,734 cows and 231 common sires. Both data sets covered calving years 1995 to 2006. Fourth-order Legendre polynomials for random effects and a Gibbs sampling method were used to estimate variance components of lactation curve parameters in separate and joint analyses. Genetic variances of the first 3 coefficients from Luxembourg data were 46 to 69% larger than corresponding estimates from the Tunisian data. Inversely, the Tunisian permanent environment variances for the same coefficients were 52 to 65% larger than the Luxembourg ones. Posterior mean heritabilities of 305-d milk yield and persistency, defined as estimated breeding values (EBV) at 280 days in milk-EBV at 80 days in milk, from between-country analysis were 0.42 and 0.12 and 0.19 and 0.08 in Luxembourg and Tunisia, respectively. Heritability estimates for the same traits from within-country analyses, mainly from the Tunisian data, were lower than those from the joint analysis. Genetic correlations for 305-d milk yield and persistency between countries were 0.60 and 0.36. Product moment and rank correlations between EBV of common sires for 305-d milk yield and persistency from within-country analyses were 0.38 and 0.41 and 0.27 and 0.26, respectively. Differences between genetic variances found in both countries reflect different milk production levels. Moreover, low genetic and rank correlations suggest different ranking of sires in the 2 environments, which implies the existence of a genotype × environment interaction for milk yield in Holsteins.

Dalimil Pesa - One of the best experts on this subject based on the ideXlab platform.

  • wiener Luxemburg amalgam spaces
    Journal of Functional Analysis, 2022
    Co-Authors: Dalimil Pesa
    Abstract:

    Abstract In this paper we introduce the concept of WienerLuxemburg amalgam spaces which are a modification of the more classical Wiener amalgam spaces intended to address some of the shortcomings the latter face in the context of rearrangement-invariant Banach function spaces. We introduce the WienerLuxemburg amalgam spaces and study their properties, including (but not limited to) their normability, embeddings between them and their associate spaces. We also study amalgams of quasi-Banach function spaces and introduce a necessary generalisation of the concept of associate spaces. We then apply this general theory to resolve the question whether the Hardy–Littlewood–Polya principle holds for all r.i. quasi-Banach function spaces. Finally, we illustrate the asserted shortcomings of Wiener amalgam spaces by providing counterexamples to certain properties of Banach function spaces as well as rearrangement

Helene Soyeurt - One of the best experts on this subject based on the ideXlab platform.

  • environmental sensitivity for milk yield in luxembourg and tunisian holsteins by herd management level
    Journal of Dairy Science, 2009
    Co-Authors: Hedi Hammami, B Rekik, Catherine Bastin, Helene Soyeurt, Jeanne Bormann, Jean Stoll, Nicolas Gengler
    Abstract:

    Milk production data of Luxembourg and Tunisian Holstein cows were analyzed using herd management (HM) level. Herds in each country were clustered into high, medium, and low HM levels based on solutions of herd-test-date and herd-year of calving effects from national evaluations. Data from both populations included 730,810 test-day (TD) milk yield records from 87,734 first-lactation cows. A multi-trait, random regression TD model was used to estimate (co)variance components for milk yield within and across country HM levels. Additive genetic and permanent environmental variances of TD milk yields varied with management level in Tunisia and Luxembourg. Additive variances were smaller across HM levels in Tunisia than in Luxembourg, whereas permanent environmental variances were larger in Tunisian HM levels. Highest heritability estimates of 305-d milk yield (0.41 and 0.21) were found in high HM levels, whereas lowest estimates (0.31 and 0.12, respectively) were associated with low HM levels in both countries. Genetic correlations among Luxembourg HM levels were >0.96, whereas those among Tunisian HM levels were below 0.80. Respective rank orders of sires ranged from 0.73 to 0.83 across Luxembourg environments and from 0.33 to 0.42 across Tunisian HM levels indicating high re-ranking of sires in Tunisia and only a scaling effect in Luxembourg. Across-country environment analysis showed that estimates of genetic variance in the high, medium, and low classes of Tunisian environments were 45, 69, and 81% lower, respectively, than the estimate found in the high Luxembourg HM level. Genetic correlations among 305-d milk yields in Tunisian and Luxembourg HM environments ranged from 0.39 to 0.79. The largest estimated genetic correlation was found between the medium Luxembourg and high Tunisian HM levels. Rank correlations for common sires' estimated breeding values among HM environments were low and ranged from 0.19 to 0.39, implying the existence of genotype by environment interaction. These results indicate that daughters of superior sires in Luxembourg have their genetic expression for milk production limited under Tunisian environments. Milk production of cows in the medium and low Luxembourg environments were good predictors of that of their paternal half-sisters in the high Tunisian HM level. Breeding decisions in low-input Tunisian environment should utilize semen from sires with daughters in similar production environments rather than semen of bulls proven in higher management levels.

  • genotype x environment interaction for milk yield in holsteins using luxembourg and tunisian populations
    Journal of Dairy Science, 2008
    Co-Authors: Hedi Hammami, B Rekik, Catherine Bastin, Helene Soyeurt, Jean Stoll, Nicolas Gengler
    Abstract:

    Abstract Test-day (TD) milk yield records of first-lactation Holstein cows in Luxembourg and Tunisia were analyzed using within-and between-country random regression TD models. Edited data used for within-country analysis included 661,453 and 281,913 TD records in Luxembourg and Tunisia, respectively. The joint data included 730,810 TD records of 87,734 cows and 231 common sires. Both data sets covered calving years 1995 to 2006. Fourth-order Legendre polynomials for random effects and a Gibbs sampling method were used to estimate variance components of lactation curve parameters in separate and joint analyses. Genetic variances of the first 3 coefficients from Luxembourg data were 46 to 69% larger than corresponding estimates from the Tunisian data. Inversely, the Tunisian permanent environment variances for the same coefficients were 52 to 65% larger than the Luxembourg ones. Posterior mean heritabilities of 305-d milk yield and persistency, defined as estimated breeding values (EBV) at 280 days in milk-EBV at 80 days in milk, from between-country analysis were 0.42 and 0.12 and 0.19 and 0.08 in Luxembourg and Tunisia, respectively. Heritability estimates for the same traits from within-country analyses, mainly from the Tunisian data, were lower than those from the joint analysis. Genetic correlations for 305-d milk yield and persistency between countries were 0.60 and 0.36. Product moment and rank correlations between EBV of common sires for 305-d milk yield and persistency from within-country analyses were 0.38 and 0.41 and 0.27 and 0.26, respectively. Differences between genetic variances found in both countries reflect different milk production levels. Moreover, low genetic and rank correlations suggest different ranking of sires in the 2 environments, which implies the existence of a genotype × environment interaction for milk yield in Holsteins.