Lygaeidae

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 258 Experts worldwide ranked by ideXlab platform

I. Hodkinson - One of the best experts on this subject based on the ideXlab platform.

  • The biogeography and regional biodiversity of the British seed bugs (Hemiptera: Lygaeidae)
    Journal of Biogeography, 1998
    Co-Authors: S. Judd, I. Hodkinson
    Abstract:

    The species distributions and biogeography of the British seed-feeding bugs belonging to the family Lygaeidae are examined in detail. The British fauna is viewed as a subset of a larger West Palaearctic fauna and its development through historic time is discussed, with particular emphasis on postglacial changes. Regional distribution patterns for individual species are presented and the fauna is classified into groups with similar distribution patterns. Factors producing these groupings, particularly climatic gradients, are discussed. Geographical gradients in species diversity are identified and the implications for conservation are discussed.

Takema Fukatsu - One of the best experts on this subject based on the ideXlab platform.

  • Evolution of symbiotic organs and endosymbionts in lygaeid stinkbugs.
    The ISME journal, 2011
    Co-Authors: Yu Matsuura, Yoshitomo Kikuchi, Takahiro Hosokawa, Ryuichi Koga, Xian Ying Meng, Yoichi Kamagata, Naruo Nikoh, Takema Fukatsu
    Abstract:

    We investigated seed bugs of the genus Nysius (Insecta: Hemiptera: Lygaeidae) for their symbiotic bacteria. From all the samples representing 4 species, 18 populations and 281 individuals, specific bacterial 16S rRNA gene sequences were consistently identified, which formed a distinct clade in the Gammaproteobacteria. In situ hybridization showed that the bacterium was endocellularly localized in a pair of large bacteriomes that were amorphous in shape, deep red in color, and in association with gonads. In the ovary of adult females, the endosymbiont was also localized in the 'infection zone' in the middle of each germarium and in the 'symbiont ball' at the anterior pole of each oocyte, indicating vertical transmission of the endosymbiont through the ovarial passage. Phylogenetic analyses based on bacterial 16S rRNA, groEL and gyrB genes consistently supported a coherent monophyly of the Nysius endosymbionts. The possibility of a sister relationship to 'Candidatus Kleidoceria schneideri', the bacteriome-associated endosymbiont of a lygaeid bug Kleidocerys resedae, was statistically rejected, indicating independent evolutionary origins of the endosymbionts in the Lygaeidae. The endosymbiont genes consistently exhibited AT-biased nucleotide compositions and accelerated rates of molecular evolution, and the endosymbiont genome was only 0.6 Mb in size. The endosymbiont phylogeny was congruent with the host insect phylogeny, suggesting strict vertical transmission and host-symbiont co-speciation over evolutionary time. Based on these results, we discuss the evolution of bacteriomes and endosymbionts in the Heteroptera, most members of which are associated with gut symbiotic bacteria. The designation 'Candidatus Schneideria nysicola' is proposed for the endosymbiont clade.

S. Judd - One of the best experts on this subject based on the ideXlab platform.

  • The biogeography and regional biodiversity of the British seed bugs (Hemiptera: Lygaeidae)
    Journal of Biogeography, 1998
    Co-Authors: S. Judd, I. Hodkinson
    Abstract:

    The species distributions and biogeography of the British seed-feeding bugs belonging to the family Lygaeidae are examined in detail. The British fauna is viewed as a subset of a larger West Palaearctic fauna and its development through historic time is discussed, with particular emphasis on postglacial changes. Regional distribution patterns for individual species are presented and the fauna is classified into groups with similar distribution patterns. Factors producing these groupings, particularly climatic gradients, are discussed. Geographical gradients in species diversity are identified and the implications for conservation are discussed.

Yu Matsuura - One of the best experts on this subject based on the ideXlab platform.

  • Evolution of symbiotic organs and endosymbionts in lygaeid stinkbugs.
    The ISME journal, 2011
    Co-Authors: Yu Matsuura, Yoshitomo Kikuchi, Takahiro Hosokawa, Ryuichi Koga, Xian Ying Meng, Yoichi Kamagata, Naruo Nikoh, Takema Fukatsu
    Abstract:

    We investigated seed bugs of the genus Nysius (Insecta: Hemiptera: Lygaeidae) for their symbiotic bacteria. From all the samples representing 4 species, 18 populations and 281 individuals, specific bacterial 16S rRNA gene sequences were consistently identified, which formed a distinct clade in the Gammaproteobacteria. In situ hybridization showed that the bacterium was endocellularly localized in a pair of large bacteriomes that were amorphous in shape, deep red in color, and in association with gonads. In the ovary of adult females, the endosymbiont was also localized in the 'infection zone' in the middle of each germarium and in the 'symbiont ball' at the anterior pole of each oocyte, indicating vertical transmission of the endosymbiont through the ovarial passage. Phylogenetic analyses based on bacterial 16S rRNA, groEL and gyrB genes consistently supported a coherent monophyly of the Nysius endosymbionts. The possibility of a sister relationship to 'Candidatus Kleidoceria schneideri', the bacteriome-associated endosymbiont of a lygaeid bug Kleidocerys resedae, was statistically rejected, indicating independent evolutionary origins of the endosymbionts in the Lygaeidae. The endosymbiont genes consistently exhibited AT-biased nucleotide compositions and accelerated rates of molecular evolution, and the endosymbiont genome was only 0.6 Mb in size. The endosymbiont phylogeny was congruent with the host insect phylogeny, suggesting strict vertical transmission and host-symbiont co-speciation over evolutionary time. Based on these results, we discuss the evolution of bacteriomes and endosymbionts in the Heteroptera, most members of which are associated with gut symbiotic bacteria. The designation 'Candidatus Schneideria nysicola' is proposed for the endosymbiont clade.

Siegfried Kehl - One of the best experts on this subject based on the ideXlab platform.

  • Diversity of Symbiotic Organs and Bacterial Endosymbionts of Lygaeoid Bugs of the Families Blissidae and Lygaeidae (Hemiptera: Heteroptera: Lygaeoidea)
    Applied and environmental microbiology, 2012
    Co-Authors: Stefan Martin Kuechler, Patricia Renz, Konrad Dettner, Siegfried Kehl
    Abstract:

    Here we present comparative data on the localization and identity of intracellular symbionts among the superfamily Lygaeoidea (Insecta: Hemiptera: Heteroptera: Pentatomomorpha). Five different lygaeoid species from the families Blissidae and Lygaeidae (sensu stricto; including the subfamilies Lygaeinae and Orsillinae) were analyzed. Fluorescence in situ hybridization (FISH) revealed that all the bugs studied possess paired bacteriomes that are differently shaped in the abdomen and harbor specific endosymbionts therein. The endosymbionts were also detected in female gonads and at the anterior poles of developing eggs, indicating vertical transmission of the endosymbionts via ovarial passage, in contrast to the posthatch symbiont transmission commonly found among pentatomoid bugs (Pentatomomorpha: Pentatomoidea). Phylogenetic analysis based on 16S rRNA and groEL genes showed that the endosymbionts of Ischnodemus sabuleti, Arocatus longiceps, Belonochilus numenius, Orsillus depressus, and Ortholomus punctipennis constitute at least four distinct clades in the Gammaproteobacteria. The endosymbiont phylogeny did not agree with the host phylogeny based on the mitochondrial cytochrome oxidase I (COI) gene, but there was a local cospeciating pattern within the subfamily Orsillinae. Meanwhile, the endosymbiont of Belonochilus numenius (Lygaeidae: Orsillinae), although harbored in paired bacteriomes as in other lygaeoid bugs of the related genera Nysius, Ortholomus, and Orsillus, was phylogenetically close to “Candidatus Rohrkolberia cinguli,” the endosymbiont of Chilacis typhae (Lygaeoidea: Artheneidae), suggesting an endosymbiont replacement in this lineage. The diverse endosymbionts and the differently shaped bacteriomes may reflect independent evolutionary origins of the endosymbiotic systems among lygaeoid bugs.